

FIX Simple Binary Encoding
Technical Specification

Working Draft for potential Release Candidate 4

THIS DOCUMENT IS A RELEASE CANDIDATE FOR A PROPOSED FIX TECHNICAL
STANDARD. A RELEASE CANDIDATE HAS BEEN APPROVED BY THE GLOBAL
TECHNICAL
COMMITTEE AS AN INITIAL STEP IN CREATING A NEW FIX TECHNICAL STANDARD.
POTENTIAL ADOPTERS ARE STRONGLY ENCOURAGED TO BEGIN WORKING WITH
THE
RELEASE CANDIDATE AND TO PROVIDE FEEDBACK TO THE GLOBAL TECHNICAL
COMMITTEE AND THE WORKING GROUP THAT SUBMITTED THE PROPOSAL. THE
FEEDBACK TO THE RELEASE CANDIDATE WILL DETERMINE IF ANOTHER REVISION
AND
RELEASE CANDIDATE IS NECESSARY OR IF THE RELEASE CANDIDATE CAN BE
PROMOTED TO BECOME A FIX TECHNICAL STANDARD DRAFT.

©Copyright 2015-2016 FIX Protocol Limited

Contents

Title

1. Introduction

2. Field Encoding

3. Message Structure

4. Message Schema

5. Schema Extension Mechanism

6. Usage Guidelines

7. Examples

8. Release Notes

00Title.md
01Introduction.md
02FieldEncoding.md
03MessageStructure.md
04MessageSchema.md
05SchemaExtensionMechanism.md
06UsageGuidelines.md
07Examples.md
08ReleaseNotes.md

Introduction
FIX Simple Binary Encoding (SBE) targets high performance trading
systems. It is optimized for low latency of encoding and decoding while
keeping bandwidth utilization reasonably small. For compatibility, it is
intended to represent all FIX semantics.

This encoding specification describes the wire protocol for messages.
Thus, it provides a standard for interoperability between communicating
parties. Users are free to implement the standard in a way that best
suits their needs.

The encoding standard is complimentary to other FIX standards for
session protocol and application level behavior.

Binary type system

In order to support traditional FIX semantics, all the documented field
types are supported. However, instead of printable character
representations of tag-value encoding, the type system binds to native
binary data types, and defines derived types as needed.

The binary type system has been enhanced in these ways:

• Provides a means to specify precision of decimal numbers and
timestamps, as well as valid ranges of numbers.

• Differentiates fixed-length character arrays from variable-length
strings. Allows a way to specify the minimum and maximum length of
strings that an application can accept.

• Provides a consistent system of enumerations, Boolean switches and
multiple-choice fields.

Design principles

The message design strives for direct data access without complex
transformations or conditional logic. This is achieved by:

• Usage of native binary data types and simple types derived from
native binaries, such as prices and timestamps.

• Preference for fixed positions and fixed length fields, supporting
direct access to data and avoiding the need for management of heaps
of variable-length elements which must be sequentially processed.

Message schema

This standard describes how fields are encoded and the general structure
of messages. The content of a message type is specified by a message

schema. A message schema tells which fields belong to a message and
their location within a message. Additionally, the metadata describes
valid value ranges and information that need not be sent on the wire,
such as constant values.

Message schemas may be based on standard FIX message specifications, or
may be customized as needed by agreement between counterparties.

Glossary

Data type - A field type with its associated encoding attributes,
including backing primitive types and valid values or range. Some types
have additional attributes, e.g. epoch of a date.

Encoding - a message format for interchange. The term is commonly used
to mean the conversion of one data format to another, such as text to
binary. However, Simple Binary Encoding strives to use native binary
data types in order to make conversion unnecessary, or at least trivial.
Encoding also refers to the act of formatting a message, as opposed to
decoding.

Message schema - metadata that specifies messages and their data
types and identifiers. Message schemas may be disseminated out of band.
For Simple Binary Encoding, message schemas are expressed as an XML
document that conforms to an XML schema that is published as part of
this standard.

Message template - metadata that specifies the fields that belong to
one particular message type. A message template is contained by a
message schema.

Session protocol - a protocol concerned with the reliable delivery of
messages over a transport. FIX protocol makes a distinction between
session protocol and the encoding of a message payload, as described by
this document. See the specifications section of FIX protocol web site
for supported protocols. The original FIX session protocol is known as
FIXT.

XML schema - defines the elements and attributes that may appear in an
XML document. The SBE message schema is defined in W3C (XSD) schema
language since it is the most widely adopted format for XML schemas.

Documentation

This document explains:

• The binary type system for field encoding

• Message structure, including field arrangement, repeating groups,
and relationship to a message header that may be provided by a
session protocol.

• The Simple Binary Encoding message schema.

Specification terms

These key words in this document are to be interpreted as described in
Internet Engineering Task Force RFC2119. These terms indicate
an absolute requirement for implementations of the standard: "must",
or "required".

This term indicates an absolute prohibition: "must not".

These terms indicate that a feature is allowed by the standard but not
required: "may", "optional". An implementation that does not
provide an optional feature must be prepared to interoperate with one
that does.

These terms give guidance, recommendation or best practices:
"should" or "recommended". A recommended choice among
alternatives is described as "preferred".

These terms give guidance that a practice is not recommended: "should not"
or "not recommended".

Document format

In this document, these formats are used for technical specifications
and data examples.

This is a sample encoding specification

<type name="short" primitiveType="int16" semanticType="int" />

This is sample data as it would be transmitted on the wire

10270000

References

Related FIX Standards

Simple Open Framing Header, FIX Protocol, Limited. Release Candidate 1
specification has been published at
http://www.fixtradingcommunity.org/

For FIX semantics, see the current FIX message specification, which is
currently FIX 5.0 Service Pack 2
with Extension Packs.

http://www.apps.ietf.org/rfc/rfc2119.html
http://www.fixtradingcommunity.org/
http://www.fixtradingcommunity.org/pg/structure/tech-specs/fix-version/50-service-pack-2

Dependencies on other standards

SBE is dependent on several industry standards. Implementations must
conform to these standards to interoperate. Therefore, they are
normative for SBE.

IEEE 754-2008 A
Standard for Binary Floating-Point Arithmetic

ISO 639-1:2002
Codes for the representation of names of languages - Part 1: Alpha-2
code

ISO 3166-1:2013
Codes for the representation of names of countries and their
subdivisions - Part 1: Country codes

ISO 4217:2008
Codes for the representation of currencies and funds

ISO 8601:2004
Data elements and interchange formats - Information interchange -
Representation of dates and times

ISO 10383:2012
Securities and related financial instruments - Codes for exchanges and
market identification (MIC)

XML 1.1 schema standards are located here W3C XML Schema

http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=22109
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=63545
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=46121
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=40874
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=61067
http://www.w3.org/XML/Schema.html#dev

Field Encoding

Field aspects

A field is a unit of data contained by a FIX message. Every field has
the following aspects: semantic data type, encoding, and metadata. They
will be specified in more detail in the sections on data type encoding
and message schema but are introduced here as an overview.

Semantic data type

The FIX semantic data type of a field tells a data domain in a broad
sense, for example, whether it is numeric or character data, or whether
it represents a time or price. Simple Binary Encoding represents all of
the semantic data types that FIX protocol has defined across all
encodings. In message specifications, FIX data type is declared with
attribute semanticType. See the section 2.2 below for a listing of those
FIX types.

Encoding

Encoding tells how a field of a specific data type is encoded on the
wire. An encoding maps a FIX data type to either a simple, primitive
data type, such as a 32 bit signed integer, or to a composite type. A
composite type is composed of two or more simple primitive types. For
example, the FIX data type Price is encoded as a decimal, a composite
type containing a mantissa and an exponent. Note that many fields may
share a data type and an encoding. The sections that follow explain the
valid encodings for each data type.

Metadata

Field metadata, part of a message schema, describes a field to
application developers. Elements of field metadata are:

• Field ID, also known as FIX tag, is a unique identifier of a field
for semantic purposes. For example, tag 55 identifies the Symbol
field of an instrument.

• Field name, as it is known in FIX specifications

• The FIX semantic data type and encoding type that it maps to

• Valid values or data range accepted

• Documentation

Metadata is normally not sent on the wire with Simple Binary Encoding
messages. It is necessary to possess the message schema that was used to

encode a message in order to decode it. In other words, Simple Binary
Encoding messages are not self-describing. Rather, message schemas are
typically exchanged out-of-band between counterparties.

See section 4 below for a detailed message schema specification.

Field presence

By default, fields are assumed to be required in a message. However,
fields may be specified as optional. To indicate that a value is not
set, a special null indicator value is sent on the wire. The null value
varies according to data type and encoding. Global defaults for null
value may be overridden in a message schema by explicitly specifying the
value that indicates nullness.

Alternatively, fields may be specified as constant. In which case, the
data is not sent on the wire, but may be treated as constants by
applications.

Default value

Default value handling is not specified by the encoding layer. A null
value of an optional field does not necessarily imply that a default
value should be applied. Rather, default handling is left to application
layer specifications.

FIX data type summary

FIX semantic types are mapped to binary field encodings as follows. See
sections below for more detail about each type.

Schema attributes may restrict the range of valid values for a field.
See Common field schema attributes below.

FIX semantic type Binary type Section Description

int Integer encoding 2.4 An integer number

Length Integer encoding 2.4 Field length in octets. Value must
be non-negative.

TagNum Integer encoding 2.4 A field's tag number. Value must
be positive.

SeqNum Integer encoding 2.4 A field representing a message
sequence number. Value must be
positive

NumInGroup Group dimension
encoding

3.4.8 A counter representing the
number of entries in a repeating
group. Value must be positive.

DayOfMonth Integer encoding 2.4 A field representing a day during
a particular month (values 1 to
31).

Qty Decimal encoding 2.5 A number representing quantity
of a security, such as shares. The
encoding may constrain values to
integers, if desired.

float Float encoding 2.5 A real number with binary
representation of specified
precision

Price Decimal encoding 2.5 A decimal number representing a
price

PriceOffset Decimal encoding 2.5 A decimal number representing a
price offset, which can be
mathematically added to a Price.

Amt Decimal encoding 2.5 A field typically representing a
Price times a Qty.

Percentage Decimal encoding 2.5 A field representing a percentage
(e.g. 0.05 represents 5% and
0.9525 represents 95.25%).

char Character 2.7.1 Single US-ASCII character value.
Can include any alphanumeric
character or punctuation. All char
fields are case sensitive (i.e. m !=
M).

String Fixed-length
character array

2.7.2 A fixed-length character array of
ASCII encoding

String Variable-length data
encoding

2.7.3 Alpha-numeric free format
strings can include any character
or punctuation. All String fields
are case sensitive (i.e. morstatt !=
Morstatt). ASCII encoding.

String—EncodedText String encoding 2.7.3 Non-ASCII string. The character
encoding may be specified by a
schema attribute.

XMLData String encoding 2.7.3 Variable-length XML. Must be
paired with a Length field.

data Fixed-length data 2.8.1 Fixed-length non-character data

data Variable-length data
encoding

2.8.2 Variable-length data. Must be
paired with a Length field.

Country Fixed-length
character array; size =

2.7.2 ISO 3166-1:2013 Country code

2 or a subset of values
may use Enumeration
encoding

Currency Fixed-length
character array; size =
3 or a subset of values
may use Enumeration
encoding

2.7.2 ISO 4217:2008 Currency code (3
character)

Exchange Fixed-length
character array; size =
4 or a subset of values
may use Enumeration
encoding

2.7.2 ISO 10383:2012 Market
Identifier Code (MIC)

Language Fixed-length
character array; size =
2 or a subset of values
may use Enumeration
encoding

2.7.2 National language - uses ISO 639-
1:2002 standard

Implicit
enumeration—char
or int

Enumeration
encoding

2.12 A single choice of alternative
values

Boolean Boolean encoding 2.12.6 Values true or false

MultipleCharValue Multi-value choice
encoding

2.13 Multiple choice of a set of values

MultipleStringValue Multi-value choice
encoding. String
choices must be
mapped to int values.

2.13 Multiple choice of a set of values

MonthYear MonthYear encoding 2.8 A flexible date format that must
include month and year at least,
but may also include day or week.

UTCTimestamp Date and time
encoding

2.9 Time/date combination
represented in UTC (Universal
Time Coordinated, also known as
"GMT")

UTCTimeOnly Date and time
encoding

2.9 Time-only represented in UTC
(Universal Time Coordinated,
also known as "GMT")

UTCDateOnly Date and time
encoding

2.9 Date represented in UTC
(Universal Time Coordinated,
also known as "GMT")

LocalMktDate Local date encoding 2.9 Local date(as oppose to UTC)

TZTimeOnly TZTimeOnly 2.11.3 Time of day

TZTimestamp TZTimestamp 2.11.1 Time/date combination
representing local time with an
offset to UTC to allow
identification of local time and
timezone offset of that time. The
representation is based on ISO
8601:2004

The FIX semantic types listed above are spelled and capitalized exactly as
they are in the FIX repository from which official FIX documents and
references are derived.

Common field schema attributes

Schema attributes alter the range of valid values for a field.
Attributes are optional unless specified otherwise.

Schema attribute Description

presence=required The field must always be set. This is the default presence. Mutually
exclusive with nullValue.

presence=constant The field has a constant value that need not be transmitted on the
wire. Mutually exclusive with value attributes.

presence=optional The field need not be populated. A special null value indicates that a
field is not set. The presence attribute may be specified on either on a
field or its encoding.

nullValue A special value that indicates that an optional value is not set. See
encodings below for default nullValue for each type. Mutually
exclusive with presence=required and constant.

minValue The lowest valid value of a range. Applies to scalar data types, but not
to String or data types.

maxValue The highest valid value of a range (inclusive unless specified
otherwise). Applies to scalar data types, but not to String or data
types.

semanticType Tells the FIX semantic type of a field or encoding. It may be specified
on either a field or its encoding.

Inherited attributes

The attributes listed above apply to a field element or its encoding
(wire format). Any attributes specified on an encoding are inherited by
fields that use that encoding.

Non-FIX types

Encodings may be added to SBE messages that do not correspond to listed
FIX data types. In that case, the encoding and fields that use the
encoding will not have a semanticType attribute.

Integer encoding

Integer encodings should be used for cardinal or ordinal number fields.
Signed integers are encoded in a two's complement binary format.

Primitive type encodings

Numeric data types may be specified by range and signed or unsigned
attribute. Integer types are intended to convey common platform
primitive data types as they reside in memory. An integer type should be
selected to hold the maximum range of values that a field is expected to
hold.

Primitive type Description Length (octets)

int8 Signed byte 1

uint8 Unsigned byte / single-byte character 1

int16 16-bit signed integer 2

uint16 16-bit unsigned integer 2

int32 32-bit signed integer 4

uint32 32-bit unsigned integer 4

int64 64-bit signed integer 8

uint64 64-bit unsigned integer 8

Range attributes for integer fields

The default data ranges and null indicator are listed below for each
integer encoding.

A message schema may optionally specify a more restricted range of valid
values for a field.

For optional fields, a special null value is used to indicate that a
field value is not set. The default null indicator may also be
overridden by a message schema.

Required and optional fields of the same primitive type have the same
data range. The null value must not be set for a required field.

Schema attribute int8 uint8 int16 uint16 int32 uint32 int64 uint64

minValue –127 0 –32767 0 –231 + 1 0 –263 + 1 0

maxValue 127 254 32767 65534 231 – 1 232 – 2 263 – 1 264 – 2

nullValue –128 255 –32768 65535 –231 232 – 1 –263 264 – 1

Byte order

The byte order of integer fields, and for derived types that use integer
components, is specified globally in a message schema. Little-Endian
order is the default encoding, meaning that the least significant byte
is serialized first on the wire.

See section 4.3.1 for specification of message schema attributes,
including byteOrder. Message schema designers should specify the byte
order most appropriate to their system architecture and that of their
counterparties.

Integer encoding specifications

By nature, integers map to simple encodings. These are valid encoding
specifications for each of the integer primitive types.

<type name="int8" primitiveType="int8" />
<type name="int16" primitiveType="int16" />
<type name="int32" primitiveType="int32" />
<type name="int64" primitiveType="int64" />
<type name="uint8" primitiveType="uint8" />
<type name="uint16" primitiveType="uint16" />
<type name="uint32" primitiveType="uint32" />
<type name="uint64" primitiveType="uint64" />

Examples of integer fields

Examples show example schemas and encoded bytes on the wire as
hexadecimal digits in Little-Endian byte order.

Example integer field specification

<field type="uint32" name="ListSeqNo" id="67" semanticType="int"
 description="Order number within the list" />

Value on the wire - uint32 value decimal 10,000, hexadecimal 2710.

10270000

Optional field with a valid range 0-6

<type name="range06" primitiveType="uint8" maxValue="6"
 presence="optional" nullValue="255" />
<field type="range06" name="MaxPriceLevels" id="1090"
 semanticType="int"/>

Wire format of uint8 value decimal 3.

03

Sequence number field with integer encoding

<field type="uint64" name="MsgSeqNum" id="34"
 semanticType="SeqNum" />

Wire format of uint64 value decimal 100,000,000,000, hexadecimal
174876E800.

00e8764817000000

Wire format of uint16 value decimal 10000, hexadecimal 2710.

1027

Wire format of uint32 null value 232 - 1

ffffffff

Decimal encoding

Decimal encodings should be used for prices and related monetary data
types like PriceOffset and Amt.

FIX specifies Qty as a float type to support fractional quantities.
However, decimal encoding may be constrained to integer values if that
is appropriate to the application or market.

Composite encodings

Prices are encoded as a scaled decimal, consisting of a signed integer
mantissa and signed exponent. For example, a mantissa of 123456 and
exponent of -4 represents the decimal number 12.3456.

Mantissa

Mantissa represents the significant digits of a decimal number. Mantissa
is a commonly used term in computing, but it is properly known in
mathematics as significand or coefficient.

Exponent

Exponent represents scale of a decimal number as a power of 10.

Floating point and fixed point encodings

A floating-point decimal transmits the exponent on the wire while a
fixed-point decimal specifies a fixed exponent in a message schema. A
constant negative exponent specifies a number of assumed decimal places
to the right of the decimal point.

Implementations should support both 32 bit and 64 bit mantissa. The
usage depends on the data range that must be represented for a
particular application. It is expected that an 8 bit exponent should be
sufficient for all FIX uses.

Encoding
type Description Backing primitives

Length
(octets)

decimal Floating-point
decimal

Composite: int64 mantiss, int8
exponent

9

decimal64 Fixed-point decimal int64 mantissa, constant exponent 8

decimal32 Fixed-point decimal int32 mantissa, constant exponent 4

Optionally, implementations may support any other signed integer types
for mantissa and exponent.

Range attributes for decimal fields

The default data ranges and null indicator are listed below for each
decimal encoding.

A message schema may optionally specify a more restricted range of valid
values for a field. For optional fields, a special mantissa value is
used to indicate that a field value is null.

Schema
attribute decimal decimal64 decimal32

exponent range –128 to 127 –128 to 127 –128 to 127

mantissa range –263 + 1 to 263 – 1 –263 + 1 to 263 –
1

–231 + 1 to 231 –
1

minValue (–263 + 1) * 10127 (–263 + 1) *
10127

(–231 + 1) *
10127

maxValue (263 – 1) * 10127 (–263 – 1) *
10127

(231 – 1) * 10127

nullValue mantissa=–263, exponent=–
128

mantissa =–263 mantissa =–231

Encoding specifications for decimal types

Decimal encodings are composite types, consisting of two subfields,
mantissa and exponent. The exponent may either be serialized on the wire
or may be set to constant. A constant exponent is a way to specify an
assumed number of decimal places.

Decimal encoding specifications that an implementation must support

<composite name="decimal" >
 <type name="mantissa" primitiveType="int64" />
 <type name="exponent" primitiveType="int8" />
</composite>

<composite name="decimal32" >
 <type name="mantissa" primitiveType="int32" />
 <type name="exponent" primitiveType="int8"
 presence="constant">-2</type>
</composite>

<composite name="decimal64">
 <type name="mantissa" primitiveType="int64" />
 <type name="exponent" primitiveType="int8"
 presence="constant">-2</type>
</composite>

Composite encoding padding

When both mantissa and exponent are sent on the wire for a decimal, the
elements are packed by default. However, byte alignment may be
controlled by specifying offset of the exponent within the composite
encoding. See section 4.4.4.3 below.

Examples of decimal fields

Examples show encoded bytes on the wire as hexadecimal digits,
little-endian.

FIX Qty data type is a float type, but a decimal may be constrained to
integer values by setting exponent to zero.

<composite name="intQty32" semanticType="Qty">
 <type name="mantissa" primitiveType="int32" />
 <type name="exponent" primitiveType="int8"
 presence="constant">0</type>
</composite>

Field inherits semanticType from encoding

<field type="intQty32" name="OrderQty" id="38"
 description="Total number of shares" />

Wire format of decimal 123.45 with 2 significant decimal places.

3930000000000000fe

Wire format of decimal64 123.45 with 2 significant decimal places.
Schema attribute exponent = -2

3930000000000000

Wire format of decimal32 123.45 with 2 significant decimal places.
Schema attribute exponent = -2

39300000

Float encoding

Binary floating point encodings are compatible with IEEE Standard for
Floating-Point Arithmetic (IEEE 754-2008). They should be used for
floating point numeric fields that do not represent prices or monetary
amounts. Examples include interest rates, volatility and dimensionless
quantities such as ratios. On the other hand, decimal prices should be
encoded as decimals; see section 2.5 above.

Primitive types

Both single and double precision encodings are supported as primitive
data types. See the IEEE 754-2008 standard for ranges and details of the
encodings.

Primitive type Description IEEE 754-2008 format Length (octets)

float Single precision floating point binary32 4

double Double precision floating point binary64 8

Null values

For both float and double precision encodings, null value of an optional
field is represented by the Not-a-Number format (NaN) of the standard
encoding. Technically, it indicated by the so-called quiet NaN.

Byte order

Like integer encodings, floating point encodings follow the byte order
specified by message schema. See section 4.3.1 for specification of
message schema attributes, including byteOrder.

Float encoding specifications

These are valid encoding specifications for each of the floating point
primitive types.

<type name="float" primitiveType="float" />
<type name="double" primitiveType="double" />

Examples of floating point fields

Examples show encoded bytes on the wire as hexadecimal digits,
little-endian.

A single precision ratio

<type name="ratio" primitiveType="float" />

<field type="ratio" name="CurrencyRatio" id="1382"
 semanticType="float"/>

Wire format of float 255.678

91ad7f43

Wire format of double 255.678

04560e2db2f56f40

String encodings

Character data may either be of fixed size or variable size. In Simple
Binary Encoding, fixed-length fields are recommended in order to support
direct access to data. Variable-length encoding should be reserved for
character strings that cannot be constrained to a specific size. It may
also be used for non-ASCII encoded strings.

Character

Character fields hold a single character. They are most commonly used
for field with character code enumerations. See section 2.12 below for
discussion of enum fields.

FIX data type Description Backing primitive Length (octet)

char A single US-ASCII character char 1

Range attributes for char fields

Valid values of a char field are printable characters of the US-ASCII
character set (codes 20 to 7E hex.) The implicit nullValue is the NUL
control character (code 0).

Schema attribute char

minValue hex 20

maxValue hex 7e

nullValue 0

Encoding of char type

This is the standard encoding for char type.

<type name="char" primitiveType="char" semanticType="char" />

Wire format of char encoding of "A" (ASCII value 65, hexadecimal 41)

41

Fixed-length character array

Character arrays are allocated a fixed space in a message, supporting
direct access to fields. A fixed size character array is distinguished
from a variable length string by the presence of a length schema
attribute or a constant attribute.

FIX
data
type Description Backing primitives

Length
(octets)

Required schema
attribute

String character
array

Array of char of specified
length, delimited by NUL
character if a string is shorter
than the length specified for a
field.

Specified by
length
attribute

length (except may
be inferred from a
constant value, if
present).

A length attribute set to zero indicates variable length. See section
2.7.3 below for variable-length data encoding.

Encoding specifications for fixed-length character array

A fixed-length character array encoding must specify
primitiveType="char" and a length attribute is required.

Range attributes minValue and maxValue do not apply to fixed-length
character arrays.

US-ASCII is the default encoding of character arrays to conform to usual
FIX values. The characterEncoding attribute may be specified to override
encoding.

Examples of fixed-length character arrays

A typical string encoding specification

<type name="string6" primitiveType="char" semanticType="String"
 length="6" />

<field type="string6" name="Symbol" id="55" />

Wire format of a character array in character and hexadecimal formats

M S F T

4d5346540000

A character array constant specification

<type name="EurexMarketID" semanticType="Exchange"
 primitiveType="char" length="4" description="MIC code"
 presence="constant">XEUR</type>

<field type="EurexMarketID" name="MarketID" id="1301" />

Variable-length string encoding

Variable-length string encoding is used for variable length ASCII
strings or embedded non-ASCII character data (like EncodedText field). A
separate length field coveys the size of the field.

On the wire, length immediately precedes the data.

The length subfield may not be null, but may be set to zero for an empty
string. In that case, no space is reserved for the data. No distinction
is made at an encoding layer between an empty string and a null string.
Semantics of an empty variable-length string should be specified at an
application layer.

FIX
data
type Description Backing primitives

Length
(octets)

Length The length of
variable data in
octets

primitiveType="uint8" or "uint16" May not hold
null value.

1 or 2

data Raw data Array of octet of size specified in associated Length
field. The data field itself should be specified as
variable length. primitiveType="uint8" length="0"
indicates variable length

variable

Optionally, implementations may support any other unsigned integer types
for length.

Range attributes for string Length
Schema attribute length uint8 length uint16 data

minValue 0 0 N/A

maxValue 254 65534 N/A

If the Length element has minValue and maxValue attributes, it specifies
the minimum and maximum length of the variable-length data.

Range attributes minValue , maxValue, and nullValue do not apply to the
data element.

If a field is required, both the Length and data fields must be set to a
"required" attribute.

Encoding specifications for variable-length string

Variable length string is encoded as a composite type, consisting of a
length sub field and data subfield. The length attribute of the varData
element is set to zero in the XML message schema as special value to
indicate that the character data is of variable length.

To map an SBE data field specification to traditional FIX, the field ID
of a data field is used. Its associated length is implicitly contained
by the composite type rather than specified as a separate field.

Encoding specification for variable length data up to 65535 octets

<composite name="varString" description="Variable-length string">
 <type name="length" primitiveType="uint16" semanticType="Length"/>
 <type name="data" length="0" primitiveType="uint8"
 semanticType="data" characterEncoding="UTF-16"/>
</composite>

<data name="SecurityDesc" id="107" type="varString"/>

The characterEncoding attribute tells which variable-sized encoding is
used if the data field represents encoded text. UTF-8 is the recommended
encoding, but there is no default in the XML schema

Example of a variable-length string field

Example shows encoded bytes on the wire.

Wire format of variable-length String in character and hexadecimal
formats, preceded by uint16 length of 4 octets in little-endian byte
order

M S F T

04004d534654

Data encodings

Raw data is opaque to SBE. In other words, it is not constrained by any
value range or structure known to the messaging layer other than length.
Data fields simply convey arrays of octets.

Data may either be of fixed-length or variable-length. In Simple Binary
Encoding, fixed-length data encoding may be used for data of
predetermined length, even though it does not represent a FIX data type.
Variable-length encoding should be reserved for raw data when its length
is not known until run-time.

Fixed-length data

Data arrays are allocated as a fixed space in a message, supporting
direct access to fields. A fixed size array is distinguished from a
variable length data by the presence of a length schema attribute rather
than sending length on the wire.

FIX data
type Description Backing primitives Length (octets)

Required schema
attribute

data octet array Array of uint8 of
specified length.

Specified by length
attribute

length

Encoding specifications for fixed-length data

A fixed-length octet array encoding should specify primitiveType="uint8"
and a length attribute is required.

Data range attributes minValue and maxValue do not apply.

Since raw data is not constrained to a character set, characterEncoding
attribute should not be specified.

Example of fixed-length data encoding

A fixed-length data encoding specification for a binary user ID

<type name="uuid" primitiveType="uint8" length="16" description="RFC 4122
compliant UUID"/>

<field type="uuid" name="Username" id="553" />

Variable-length data encoding

Variable-length data is used for variable length non-character data
(such as RawData). A separate length field conveys the size of the field.
On the wire, length immediately precedes the data.

The length subfield may not be null, but it may be set to zero. In that
case, no space is reserved for the data. Semantics of an empty
variable-length data element should be specified at an application
layer.

FIX data
type Description Backing primitives

Length
(octets)

Length The length of
variable data in
octets

primitiveType="uint8" or "uint16" May not hold
null value.

1 or 2

data Raw data Array of octet of size specified in associated
Length field. The data field itself should be

variable

specified as variable length.
primitiveType="uint8"

Optionally, implementations may support any other unsigned integer types
for length.

Range attributes for variable-length data Length
Schema attribute length uint8 length uint16 data

minValue 0 0 N/A

maxValue 254 65534 N/A

If the Length field has minValue and maxValue attributes, it specifies
the minimum and maximum length of the variable-length data. Data range
attributes minValue , maxValue, and nullValue do not apply to a data
field.

If a field is required, both the Length and data fields must be set to a
"required" attribute.

Encoding specifications for variable-length data

Variable length data is encoded as composite type, consisting of a
length sub field and data subfield.

To map an SBE data field specification to traditional FIX, the field ID
of a data field is used. Its associated length is implicitly contained
by the composite type rather than specified as a separate field.

Encoding specification for variable length data up to 65535 octets

<composite name="DATA" description="Variable-length data">
 <type name="length" primitiveType="uint16" semanticType="Length"/>
 <type name="data" length="0" primitiveType="uint8" semanticType="data" />
</composite>

<data name="RawData" id="96" type="DATA"/>

Example of a data field

Example shows encoded bytes on the wire.

Wire format of data in character and hexadecimal formats, preceded by
uint16 length of 4 octets in little-endian byte order

M S F T

04004d534654

MonthYear encoding

MonthYear encoding contains four subfields representing respectively
year, month, and optionally day or week. A field of this type is not
constrained to one date format. One message may contain only year and
month while another contains year, month and day in the same field, for
example.

Values are distinguished by position in the field. Year and month must
always be populated for a non-null field. Day and week are set to
special value indicating null if not present. If Year is set to the null
value, then the entire field is considered null.

Subfield Primitive type Length (octets) Null value

Year uint16 2 65535

Month (1-12) uint8 1 —

Day of the month(1-31) optional uint8 1 255

Week of the month (1-5) optional uint8 1 255

Composite encoding padding

The four subfields of MonthYear are packed at an octet level by default.
However, byte alignment may be controlled by specifying offset of the
elements within the composite encoding. See section 4.4.4.3 below.

Encoding specifications for MonthYear

MonthYear data type is based on a composite encoding that carries its
required and optional elements.

The standard encoding specification for MonthYear

<composite name="monthYear" semanticType="MonthYear">
 <type name="year" primitiveType="uint16" presence="optional"
 nullValue="65536" />
 <type name="month" primitiveType="uint8" minValue="1" maxValue="12" />
 <type name="day" primitiveType="uint8" minValue="1" maxValue="31"
 presence="optional" nullValue="255" />
 <type name="week" description="week of month" primitiveType="uint8"
 minValue="1" maxValue="5" presence="optional" nullValue="255" />
</composite>

Example MonthYear field specification

Wire format of MonthYear 2014 June week 3 as hexadecimal

de0706ff03

Date and time encoding

Dates and times represent Coordinated Universal Time (UTC). This is the
preferred date/time format, except where regulations require local time
with time zone to be reported (see time zone encoding below).

Epoch

Each time type has an epoch, or start of a time period to count values.
For timestamp and date, the standard epoch is the UNIX epoch, midnight
January 1, 1970 UTC.

A time-only value may be thought of as a time with an epoch of midnight
of the current day. Like current time, the epoch is also referenced as
UTC.

Time unit

Time unit tells the precision at which times can be collected. Time unit
may be serialized on the wire if timestamps are of mixed precision. On
the other hand, if all timestamps have the same precision, then time
unit may be set to a constant in the message schema. Then it need not be
sent on the wire.

FIX data type Description
Backing
primitives

Length
(octets)

Schema
attributes

UTCTimestamp UTC date/time Default:
nanoseconds since Unix
epoch Range Jan. 1, 1970 -
July 21, 2554

uint64 time 8 epoch=”unix”
(default)

 timeUnit = second or
millisecond or microsecond
or nanosecond May be
constant

uint8 unit 1

UTCTimeOnly UTC time of day only Default:
nanoseconds since midnight
today

uint64 time 8

 timeUnit = second or
millisecond or microsecond
or nanosecond May be
constant

uint8 unit 1

UTCDateOnly UTC calendar date Default:
days since Unix epoch. Range:
Jan. 1, 1970 - June 7, 2149

uint16 2 epoch=”unix”
(default)

Encoding specifications for date and time

Time specifications use an enumeration of time units. See section 2.13
below for a fuller explanation of enumerations.

Enumeration of time units:

<enum name="TimeUnit" encodingType="uint8">
 <validValue name="second">0</validValue>
 <validValue name="millisecond">3</validValue>
 <validValue name="microsecond">6</validValue>
 <validValue name="nanosecond">9</validValue>
</enum>

Timestamp with variable time units:

<composite name="UTCTimestamp" description="UTC timestamp with precision on
the wire" semanticType="UTCTimestamp" >
 <type name="time" primitiveType="uint64" />
 <type name="unit" primitiveType="uint8" />
</composite>

Timestamp with constant time unit:

<composite name="UTCTimestampNanos" description="UTC timestamp with
nanosecond precision" semanticType="UTCTimestamp" >
 <type name="time" primitiveType="uint64" />
 <type name="unit" primitiveType="uint8" presence="constant"
valueRef="TimeUnit.nanosecond" />
</composite>

Time only with variable time units:

<composite name="UTCTime" description="Time of day with precision on the
wire" semanticType="UTCTimeOnly" >
 <type name="time" primitiveType="uint64" />
 <type name="unit" primitiveType="uint8" />
</composite>

Time only with constant time unit:

<composite name="UTCTimeNanos" description="Time of day with millisecond
precision" semanticType="UTCTimeOnly" >
 <type name="time" primitiveType="uint64" />
 <type name="unit" primitiveType="uint8" presence="constant"
valueRef="TimeUnit.millisecond" />
</composite>

Date only specification:

<type name="date" primitiveType="uint16" semanticType="UTCDateOnly" />

Examples of date/time fields

timestamp 14:17:22 Friday, October 4, 2024 UTC (20,000 days and 14
hours, 17 minutes and 22 seconds since the UNIX epoch) with default
schema attributes

<composite name="UTCTimestampNanos" description="UTC timestamp with
nanosecond precision" semanticType="UTCTimestamp" >
<type name="time" primitiveType="uint64" />
<type name="unit" primitiveType="uint8" presence="constant"
valueRef="TimeUnit.nanosecond" />
</composite>

Wire format of UTCTimestamp with constant time unit in little-Endian
byte order

4047baa145fb17

time 10:24:39.123456000 (37,479 seconds and 123456000 nanoseconds
since midnight UTC) with default schema attributes

<composite name="UTCTimeOnlyNanos" description="UTC time of day with
nanosecond precision" semanticType="UTCTimeOnly" >
 <type name="time" primitiveType="uint64" />
 <type name="unit" primitiveType="uint8" presence="constant"
valueRef="TimeUnit.nanosecond" />
</composite>

Wire format of UTCTimeOnly

10d74916220000

date Friday, October 4, 2024 (20,000 days since UNIX epoch) with
default schema attributes

<type name="date" primitiveType="uint16" semanticType="UTCDateOnly" />

Wire format of UTCDateOnly

204e

Local date encoding

Local date is encoded the same as UTCDateOnly, but it represents local
time at the market instead of UTC time.

FIX data type Description
Backing
primitives

Length
(octets)

Schema
attributes

LocalMktDate Local calendar date Default:
days since Unix epoch. Range:
Jan. 1, 1970 - June 7, 2149 local

uint16 2 epoch=”unix”
(default)

time

The standard encoding specification for LocalMktDate

<type name="localMktDate" primitiveType="uint16" semanticType="LocalMktDate"
/>

Local time encoding

Time with time zone encoding should only be used when required by market
regulations. Otherwise, use UTC time encoding (see above).

Time zone is represented as an offset from UTC in the ISO 8601:2004
format ±hhmm.

TZTimestamp encoding

A binary UTCTimestamp followed by a number representing the time zone
indicator as defined in ISO 8601:2004.

FIX data type Description
Backing
primitives

Length
(octets) Schema attributes

TZTimestamp date/time with timezone
Default: nanoseconds since
Unix epoch Range Jan. 1,
1970 - July 21, 2554

uint64 8 epoch=”unix”
(default) Represents
Jan. 1, 1970 local
time

 timeUnit = second or
millisecond or
microsecond or
nanosecond May be
constant

uint8 1

 Time zone hour offset int8 1 None

 Time zone minute offset uint8 1 None

Composite encoding padding

The subfields of TZTimestamp are packed at an octet level by default.
However, byte alignment may be controlled by specifying offset of the
elements within the composite encoding. See section 4.4.4.3 below.

Standard TZTimestamp encoding specification

<composite name="tzTimestamp" semanticType="TZTimestamp">
 <type name="time" primitiveType="uint64" />
 <type name="unit" primitiveType="uint8" />
 <!-- Sign of timezone offset is on hour subfield -->
 <type name="timezoneHour" primitiveType="int8" minValue="-12"
maxValue="14" />

 <type name="timezoneMinute" primitiveType="uint8" maxValue="59" />
</composite>

Wire format of TZTimestamp 8:30 17 September 2013 with Chicago time zone
offset (-6:00)

0050d489fea22413fa00

TZTimeOnly encoding

A binary UTCTimeOnly followed by a number representing the time zone
indicator as defined in ISO 8601:2004.

The time zone hour offset tells the number of hours different to UTC
time. The time zone minute tells the number of minutes different to UTC.
The sign telling ahead or behind UTC is on the hour subfield.

FIX data
type Description

Backing
primitives

Length
(octets)

Schema
attributes

TZTimeOnly Time of day only with time zone
Default: nanoseconds since
midnight today, local time

uint64 8 None

 timeUnit = second or millisecond
or microsecond or nanosecond
May be constant

uint8 1 None

 Time zone hour offset int8 1 None

 Time zone minute offset uint8 1 None

Composite encoding padding

The subfields of TZTimeOnly are packed at an octet level by default.
However, byte alignment may be controlled by specifying offset of the
elements within the composite encoding. See section 4.4.4.3 below.

Standard TZTimeOnly encoding specification

<composite name="tzTimeOnly" semanticType="TZTimeOnly">
 <type name="time" primitiveType="uint64" />
 <type name="unit" primitiveType="uint8" />
 <!-- Sign of timezone offset is on hour subfield -->
 <type name="timezoneHour" primitiveType="int8"
 minValue="-12" maxValue="14" />
 <type name="timezoneMinute" primitiveType="uint8" minValue="0"
 maxValue="59" />
</composite>

Wire format of TZTimeOnly 8:30 with Chicago time zone offset (-6:00)

006c5ebe76000000fa00

Enumeration encoding

An enumeration conveys a single choice of mutually exclusive valid
values.

Primitive type encodings

An unsigned integer or character primitive type is selected to contain
the number of choices. Implementations must support char and uint8
types. They may additionally support other unsigned integer types to
allow more choices.

Primitive type Description Length (octets) Maximum number of choices

char character 1 95

uint8 8-bit unsigned integer 1 255

Value encoding

If a field is of FIX data type char, then its valid values are
restricted to US-ASCII printable characters. See section 2.7.1 above.

If the field is of FIX data type int, then a primitive integer data type
should be selected that can contain the number of choices. For most
cases, an 8 bit integer will be sufficient, allowing 255 possible
values.

Enumerations of other data types, such as String valid values specified
in FIX, should be mapped to an integer wire format in SBE.

Encoding specification of enumeration

In a message schema, the choices are specified a <validValue> members
of an <enum>. An <enum> specification must contain at least one
<validValue>.

The name and value of a validValue element must be unique within an
enumeration.

An <enum> element must have an encodingType attribute to specify the
type of its values. Two formats of encodingType are acceptable:

• In-line style: the value of encodingType is its primitive data type.

• Reference style: the value of encodingType is the name of a <type>
element that specifies the wire format.

The length of a <type> associated to an enumeration must be 1. That
is, enumerations should only be backed by scalar types, not arrays.

Enumeration examples

These examples use a char field for enumerated code values.

Example enum lists acceptable values and gives the underlying encoding,
which in this case is char (in-line style)

<enum name="SideEnum" encodingType="char">
 <validValue name="Buy">1</validValue>
 <validValue name="Sell">2</validValue>
 <validValue name="SellShort">5</validValue>
 <validValue name="SellShortExempt">6</validValue>
 <!-- not all FIX values shown -->
</enum>

Reference to type: This specification is equivalent to the one above.

<type name="charEnumType" primitiveType="char"/>
 <enum name="SideEnum" encodingType="charEnumType">
 <!-- valid values as above -->
</enum>

Side field specification references the enumeration type

<field type="Side" name="SideEnum" id="54" />

Wire format of Side "Buy" code as hexadecimal

01

Constant field of an enumeration value

A constant field may be specified as a value of an enumeration. The
attribute valueRef is a cross-reference to validValue entry by symbolic
name.

Example of a char field using a constant enum value

<enum name="PartyIDSourceEnum" primitiveType="char">
 <validValue name="BIC">B</validValue>
 <validValue name="GeneralIdentifier">C</validValue>
 <validValue name="Proprietary">D</validValue>
</enum>

<field type="PartyIDSourceEnum" name="PartyIDSource" id="447"
 description="Party ID source is fixed" presence="constant"
 valueRef="PartyIDSourceEnum.GeneralIdentifier" />

Boolean encoding

A Boolean field is a special enumeration with predefined valid values:
true and false. Like a standard enumeration, an optional Boolean field

may have nullValue that indicates that the field is null (or not
applicable).

Standard encoding specifications for required and optional Boolean
fields

<enum name="booleanEnum" encodingType="uint8" semanticType="Boolean">
 <validValue name="false">0</validValue>
 <validValue name="true">1</validValue>
</enum>

<enum name="optionalBoolean" encodingType="uint8" presence="optional"
 nullValue="255" semanticType="Boolean">
 <validValue name="false">0</validValue>
 <validValue name="true">1</validValue>
</enum>

Example optional Boolean field

<field type="optionalBoolean" name="SolicitedFlag" id="377" />

Wire format of true value as hexadecimal

01

Wire format of false value as hexadecimal

00

Wire format of null Boolean (or N/A) value as hexadecimal

ff

Multi-value choice encoding

A multi-value field conveys a choice of zero or more non-exclusive valid values.

Primitive type encodings

The binary encoding uses a bitset (a fixed-size sequence of bits, also
known as bitmap, bit array or bit vector) to represent up to 64 possible
choices. The encoding is backed by an unsigned integer. The smallest
unsigned primitive type should be selected that can contain the number
of valid choices.

Primitive type Description Length (octets) Maximum number of choices

uint8 8-bit unsigned integer 1 8

uint16 16-bit unsigned integer 2 16

uint32 32-bit unsigned integer 4 32

uint64 64-bit unsigned integer 8 64

Like other integer-backed encodings, multi-value encodings follow the
byte order specified by message schema when serializing to the wire. See
section 4.3.1 for specification of message schema attributes, including
byteOrder.

Value encoding

Each choice is assigned a bit of the primitive integer encoding,
starting with the least significant bit. For each choice the value is
selected or not, depending on whether it corresponding bit is set or
cleared.

Any remaining unassigned bits in an octet should be cleared.

There is no explicit null value for multi-value choice encoding other
than to set all bits off when no choices are selected.

Encoding specification of multi-value choice

In a message schema, the choices are specified as <choice> members of
an <set> element. Choices are assigned values as an ordinal of bits in
the bit set. The first Choice "0" is assigned the least significant bit;
choice "1" is the second bit, and so forth.

The name and value (bit position) must be unique for element of a set.

A <set> element must have an encodingType attribute to specify the
wire format of its values. Two formats of encodingType are recognized :

• In-line style: the value of encodingType is its primitive data type.

• Reference style: the value of encodingType is the name of a <type>
element that specifies the wire format.

The length of a <type> associated to an bitset must be 1. That is,
bitsets should not be specified as arrays.

Multi-value example

Example of a multi-value choice (was MultipleCharValue in tag-value encoding) Encoding
type is
in-line style.

<set name="FinancialStatusEnum" encodingType="uint8">
 <choice name="Bankrupt">0</choice>
 <choice name="Pending delisting">1</choice>
 <choice name="Restricted">2</choice>
</set>

Reference to type. This is equivalent to the example above.

<type name="u8Bitset" primitiveType="uint8"/>

<set name="FinancialStatusEnum" encodingType="u8Bitset">
<!--choices as above -->
</set>

A field using the multi-choice encoding

<field type="FinancialStatus" name="FinancialStatusEnum"
 id="291" semanticType="MultipleCharValue"/>

Wire format of choices "Bankrupt" + "Pending delisting" (first and
second bits set)

03

Field value validation

These validations apply to message field values.

If a value violation is detected on a received message, the message
should be rejected back to the counterparty in a way appropriate to the
session protocol.

Error condition Error description

Field value less than minValue The encoded value falls below the specified valid range.

Field value greater than
maxValue

The encoded value exceeds the specified valid range.

Null value set for required field The null value of a data type is invalid for a required
field.

String contains invalid
characters

A String contains non-US-ASCII printable characters or
other invalid sequence if a different characterEncoding is
specified.

Required subfields not
populated in MonthYear

Year and month must be populated with non-null values,
and the month must be in the range 1-12.

UTCTimeOnly exceeds day
range

The value must not exceed the number of time units in a
day, e.g. greater than 86400 seconds.

TZTimestamp and TZTimeOnly
has missing or invalid time
zone

The time zone hour and minute offset subfields must
correspond to an actual time zone recognized by
international standards.

Value must match valid value of
an enumeration field

A value is invalid if it does not match one of the explicitly
listed valid values.

Message Structure

Message Framing

SBE messages need framing when used with protocols that do not preserve
message boundaries, such as when they are transmitted on a streaming
session protocol or are persisted in storage. Be aware that framing
features may or may not be encoded in SBE.

Simple Open Framing Header

FIX Protocol Ltd. offers the Simple Open Framing Header standard for
framing messages encoded with binary wire formats, such as Simple Binary
Encoding.

The framing header provides two features:

• An overall message size including headers to support framing

• An identifier of the encoding used in the message payload. This
supports selecting the correct decoder in the case where multiple
message encodings are used on a session. It also aids tooling such
as protocol analyzers to identify message protocols contained in
network packets.

While the Simple Open Framing Header specification is normative, the
following is an interpretation of that standard as an SBE encoding. Note
that the framing standard specifies that the framing header will always
be encoded in big-endian byte order, also known as network byte order.

Simple Open Framing Header as an SBE composite encoding (big-endian)

<composite name="framingHeader"/>
 <type name="messageLength" primitiveType="uint32" />
 <type name="encodingType" primitiveType="uint16" />
</composite>

The values of encodingType used to indicate SBE payloads are currently
defined as:

Encoding encodingType value

SBE version 1.0 big-endian 0x5BE0

SBE version 1.0 little-endian 0xEB50

The Simple Open Framing Header specification also lists values for other
wire formats.

SBE Message Encoding Header

The purpose of the message encoding header is to tell which message
template was used to encode the message and to give information about
the size of the message body to aid in decoding, even when a message
template has been extended in a later version. See section 5 below for
an explanation of the schema extension mechanism.

The fields of the SBE message header are:

• Block length of the message root - the total space reserved for
the root level of the message not counting any repeating groups or
variable-length fields.

• Template ID - identifier of the message template

• Schema ID - identifier of the message schema that contains the
template

• Schema version - the version of the message schema in which the
message is defined

Block length is specified in a message schema, but it is also serialized
on the wire. By default, block length is set to the sum of the sizes of
body fields in the message. However, it may be increased to force
padding at the end of block. See section 3.3.3.3 below.

Message header schema

The header fields precede the message body of every message in a fixed
position as shown below. Each of these fields must be encoded as an
unsigned integer type. The encoding must carry the name "messageHeader".

The message header is encoded in the same byte order as the message
body, as specified in a message schema. See section 4.3.1.

Recommended message header encoding

<composite name="messageHeader" description="Template ID and length of
message root">
 <type name="blockLength" primitiveType="uint16"/>
 <type name="templateId" primitiveType="uint16"/>
 <type name="schemaId" primitiveType="uint16"/>
 <type name="version" primitiveType="uint16"/>
</composite>

The recommended header encoding is 8 octets.

Element Description Primitive type Length (octets) Offset

blockLength Root block length uint16 2 0

templateId Template ID uint16 2 2

schemaId Schema ID uint16 2 4

version Schema Version uint16 2 6

Optionally, implementations may support any other unsigned integer types
for blockLength.

Root block length

The total space reserved for the root level of the message not counting
any repeating groups or variable-length fields. (Repeating groups have
their own block length; see section 3.4 below. Length of a
variable-length Data field is given by its corresponding Length field;
see section 2.7.3 above.) Block length only represents message body
fields; it does not include the length of the message header itself,
which is a fixed size.

The block size must be at least the sum of lengths of all fields at the
root level of the message, and that is its default value. However, it
may be set larger to reserve more space to effect alignment of blocks.
This is specified by setting the blockLength attribute in a message
schema.

Template ID

The identifier of a message type in a message schema. See section 4.5.2
below for schema attributes of a message.

Schema ID

The identifier of a message schema. See section 4.3.1 below for schema
attributes.

Schema version

The version number of the message schema that was used to encode a
message. See section 4.3.1 below for schema attributes.

Message Body

The message body conveys the business information of the message.

Data only on the wire

In SBE, fields of a message occupy proximate space without delimiters or
metadata, such as tags.

Direct access

Access to data is positional, guided by a message schema that specifies
a message type.

Data fields in the message body correspond to message schema fields;
they are arranged in the same sequence. The first data field has the
type and size specified by the first message schema field, the second
data field is described by the second message schema field, and so
forth. Since a message decoder follows the field descriptions in the
schema for position, it is not necessary to send field tags on the wire.

In the simplest case, a message is flat record with a fixed length.
Based on the sequence of field data types, the offset to a given data
field is constant for a message type. This offset may be computed in
advance, based on a message schema. Decoding a field consists of
accessing the data at this fixed location.

Field position and padding

No padding by default

By default, there is no padding between fields. In other words, a field
value is packed against values of its preceding and following fields. No
consideration is given to byte boundary alignment.

By default, the position of a field in a message is determined by the
sum of the sizes of prior fields, as they are defined by the message
schema.

<field name="ClOrdID" id="11" type="string14"
 semanticType="String"/>
<field name="Side" id="54" type="char" semanticType="char"/>
<field name="OrderQty" id="38" type="intQty32"
 semanticType="Qty"/>
<field name="Symbol" id="55" type="string8" semanticType="String"/>

Field Size Offset

ClOrdID 14 0

Side 1 14

OrderQty 4 15

Symbol 8 19

Field offset specified by message schema

If a message designer wishes to introduce padding or control byte
boundary alignment or map to an existing data structure, field offset
may optionally be specified in a message schema. Field offset is the

number of octets from the start of the message body or group to the
first octet of the field. Offset is a zero-based index.

If specified, field offset must be greater than or equal to the sum of
the sizes of prior fields. In other words, an offset is invalid if it
would cause fields to overlap.

Extra octets specified for padding should never be interpreted as
business data. They should be filled with binary zeros.

Example of fields with specified offsets

<field name="ClOrdID" id="11" type="string14" offset="0"
 semanticType="String"/>
<field name="Side" id="54" type="char" offset="14"
 semanticType="char"/>
<field name="OrderQty" id="38" type="intQty32" offset="16"
 semanticType="Qty"/>
<field name="Symbol" id="55" type="string8" offset="20"
 semanticType="String"/>

Field Size Padding preceding field Offset

ClOrdID 14 0 0

Side 1 0 14

OrderQty 4 1 16

Symbol 8 0 20

Padding at end of a message or group

In order to force messages or groups to align on byte boundaries or map
to an existing data structure, they may optionally be specified to
occupy a certain space with a blockLength attribute in the message
schema. The extra space is padded at the end of the message or group. If
specified, blockLength must be greater than or equal to the sum of the
sizes of all fields in the message or group.

The blockLength attribute applies only to the portion of message that
contains fix-length fields; it does not apply to variable-length data
elements of a message.

Extra octets specified for padding should be filled with binary zeros.

Example of blockLength specification for 24 octets

<message name="ListOrder" id="2" blockLength="24">

Repeating Groups

A repeating group is a message structure that contains a variable number
of entries. Each entry contains fields specified by a message schema.

The order and data types of the fields are the same for each entry in a
group. That is, the entries are homogeneous. Position of a given
field within any entry is fixed, with the exception of variable-length
fields.

A message may have no groups or an unlimited number of repeating groups
specified in its schema.

Schema specification of a group

A repeating group is defined in a message schema by adding a <group>
element to a message template. An unlimited number of <field> elements
may be added to a group, but a group must contain at least one field.

Example repeating group encoding specification

<group name="Parties" id="1012" blockLength="16">
 <field name="PartyID" id="448" type="string14"
 semanticType="String"/>
 <field name="PartyIDSource" id="447" type="char"
 semanticType="char"/>
 <field name="PartyRole" id="452" type="uint8" semanticType="int"/>
</group>

Group block length

The blockLength part of a group dimension represents total space reserved
for each group entry, not counting any nested repeating groups or variable-length
fields. (Length of a variable-length Data field is given by its corresponding
Length field.) Block length only represents message body fields; it does not
include the length of the group dimension itself, which is a fixed size.

Padding at end of a group entry

By default, the space reserved for an entry is the sum of a group’s
field lengths, as defined by a message schema, without regard to byte
alignment.

The space reserved for an entry may optionally be increased to effect
alignment of entries or to plan for future growth. This is specified by
adding the group attribute blockLength to reserve a specified number of
octets per entry. If specified, the extra space is padded at the end of
each entry and should be set to zeroes by encoders. The blockLength
value does not include the group dimensions itself.

Note that padding will only result in deterministic alignment if the
repeating group contains no variable-length fields.

Entry counter

Each group is associated with a required counter field of semantic data
type NumInGroup to tell how many entries are contained by a message. The
value of the counter is a non-negative integer. See "Encoding of repeating group
dimensions" section below
for encoding of that counter.

Empty group

The space reserved for all entries of a group is the product of the
space reserved for each entry times the value of the associated
NumInGroup counter. If the counter field is set to zero, then no entries
are sent in the message, and no space is reserved for entries. The group
dimensions including the zero-value counter is still transmitted,
however.

Multiple repeating groups

A message may contain multiple repeating groups at the same level.

Example of encoding specification with multiple repeating groups

<message name="ExecutionReport" id="8">
 <group name="ContraGrp" id="2012">
 <!-- ContraGrp group fields -->
 </group>
 <group name="PreAllocGrp" id="2026">
 <!-- PreAllocGrp group fields -->
 </group>
</message>

Nested repeating group specification

Repeating groups may be nested to an arbitrary depth. That is, a
<group> in a message schema may contain one or more <group> child
elements, each associated with their own counter fields.

The encoding specification of nested repeating groups is in the same
format as groups at the root level of a message in a recursive
procedure.

Example of nested repeating group specification

<group name="ListOrdGrp" id="2030">
 <field name="ClOrdID" id="11" type="string14" semanticType="String"/>
 <field name="ListSeqNo" id="67" type="uint32" semanticType="int"/>

 <field name="Symbol" id="55" type="string8" semanticType="String"/>
 <field name="Side" id="54" type="char" semanticType="char"/>
 <field name="OrderQty" id="38" type="intQty32" semanticType="Qty"/>
 <group name="Parties" id="1012">
 <field name="PartyID" id="448" type="string14"
semanticType="String"/>
 <field name="PartyRole" id="452" type="int" semanticType="int"/>
 </group>
</group>

Nested repeating group wire format

Nested repeating groups are encoded on the wire by a depth-first walk of
the data hierarchy. For example, all inner entries under the first outer
entry must be encoded before encoding outer entry 2. (This is the same
element order as FIX tag=value encoding.)

On decoding, nested repeating groups do no support direct access to
fields. It is necessary to walk all elements in sequence to discover the
number of entries in each repeating group.

Empty group means nested group is empty

If a group contains nested repeating groups, then a NumInGroup counter
of zero implies that both that group and its child groups are empty. In
that case, no NumInGroup is encoded on the wire for the child groups.

Group dimension encoding

Every repeating group must be immediately preceded on the wire by its
dimensions. The two dimensions are the count of entries in a repeating
group and the space reserved for each entry of the group.

Range of group entry count

Implementations should support uint8 and uint16 types for repeating
group entry counts. Optionally, implementations may support any other
unsigned integer types.

By default, the minimum number of entries is zero, and the maximum number is the largest
value of the primitiveType of the counter.

Primitive type Description Length (octets) Maximum number of entries

uint8 8-bit unsigned integer 1 255

uint16 16-bit unsigned integer 2 65535

The number of entries may be restricted to a specific range; see "Restricting repeating
group entries" below.

Encoding of repeating group dimensions

Conventionally in FIX, a NumInGroup field conveys the number of entries
in a repeating group. In SBE, the encoding conveys two dimensions: the
number of entries and the length of each entry in number octets.
Therefore, the encoding is a composite of those two elements. Block
length and entry count subfields must be encoded as unsigned integer
types.

By default, the name of the group dimension encoding is
groupSizeEncoding. This name may be overridden by setting the
dimensionType attribute of a <group> element.

Recommended encoding of repeating group dimensions

<composite name="groupSizeEncoding">
 <type name="blockLength" primitiveType="uint16"/>
 <type name="numInGroup" primitiveType="uint16"
semanticType="NumInGroup"/>
</composite>

Wire format of NumInGroup with block length 55 octets by 3 entries

37000300

Restricting repeating group entries

The occurrences of a repeating group may be restricted to a specific range by modifying the
numInGroup member of the group dimension encoding. The minValue attribute controls
the minimum number of entries, overriding the default of zero, and the maxValue attribute
restricts the maximum entry count to something less than the maximum corresponding to
its primitiveType. Either or both attributes may be specified.

Example of a restricted group encoding

<composite name="restrictedGroupSizeEncoding">
 <type name="blockLength" primitiveType="uint16"/>
 <type name="numInGroup" primitiveType="uint16" semanticType="NumInGroup"
minValue="1" maxValue="10" />
</composite>

Sequence of message body elements

Root level elements

To maximize deterministic field positions, message schemas must be
specified with this sequence of message body elements:

1. Fixed-length fields that reside at the root level of the message
(that is, not members of repeating groups), including any of the
following, in the order specified by the message schema::

 a. Fixed-length scalar fields, such as integers

 b. Fixed-length character arrays

 c. Fixed-length composite types, such as MonthYear

2. Repeating groups, if any.

3. Data fields, including raw data and variable-length strings, if any.

Repeating group elements

Repeating group entries are recursively organized in the same fashion as
the root level: fixed-length fields, then nested repeating groups, and
finally, variable-length data fields.

Message structure validation

Aside from message schema validations (see section 4.8 below), these
validations apply to message structure.

If a message structure violation is detected on a received message, the
message should be rejected back to the counterparty in a way appropriate
to the session protocol.

Error condition Error description

Wrong message size in
header

A message size value smaller than the actual message may
cause a message to be truncated.

Wrong or unknown
template ID in header

A mismatch of message schema would likely render a
message unintelligible or cause fields to be misinterpreted.

Fixed-length field after
repeating group or
variable-length field

All fixed-length fields in the root of a message or in a
repeating group entry must be listed before any (nested)
repeating group or variable-length field.

Repeating group after
variable-length field

All repeating groups at the root level or in a nested repeating
group must be listed before any variable length field at the
same level.

Message Schema

XML schema for SBE message schemas

See SimpleBinary1-0.xsd for the normative XML Schema Definition (XSD) for SBE.

XML namespace

The Simple Binary Encoding XML schema is identified by this URL:

../resources/SimpleBinary1-0.xsd

xmlns:sbe=http://fixprotocol.io/sbe/rc4

Conventionally, the URI of the XML schema is aliased by the prefix
"sbe".

Caution: Users should treat the SBE XML namespace as a URI (unique identifier),
not as a URL (physical resource locator). Firms should not depend on
access to the FIX Trading Community web site to validate XML schemas at
run-time

Name convention

All symbolic names in a message schema are restricted to alphanumeric
characters plus underscore without spaces. This is the same restriction
applied to all names in FIX specifications.

Capitalization

The value of a field's semanticType attribute is a FIX data type. In
this document, FIX types are capitalized exactly as in the FIX
repository, from which all official FIX documentation and references are
derived. Since the capitalization is somewhat inconsistent, however, it
is recommended that matching of type names should be case insensitive in
schema parsers.

Root element

The root element of the XML document is <messageSchema>.

<messageSchema> attributes

The root element provides basic identification of a schema.

The byteOrder attribute controls the byte order of integer encodings
within the schema. It is a global setting for all specified messages and
their encodings.

Schema
attribute Description XML type Usage Valid values

package Name or
category of a
schema

string optional Should be
unique
between
counterparties
but no naming
convention is
imposed.

id Unique
identifier of a

unsignedInt Should be
unique

schema between
counterparties

version Version of this
schema

nonnegativeInteger Initial version
is zero and is
incremented
for each
version

semanticVersion Version of FIX
semantics

string optional FIX versions,
such as
“FIX.5.0_SP2”

byteOrder Byte order of
encoding

token default =
littleEndian

littleEndian
bigEndian

description Documentation
of the schema

string optional

headerType Name of the
encoding type
of the message
header, which
is the same for
all messages in
a schema.

string default=
messageHeader

An encoding
with this name
must be
contained by
'`.

Schema versioning

Changes to a message schema may be tracked by its version attribute. A
version of a schema is a snapshot in time. All elements in a given
generation of the schema share the same version number. That is,
elements are not versioned individually. By convention, the initial
version of a schema is version zero, and subsequent changes increment
the version number.

The package attribute should remain constant between versions, if it is
supplied.

Data encodings

Encoding sets

The <types> element contains one or more sets of data encodings used
for messages within the schema.

Within each set, an unbound number of encodings will be listed in any
sequence:

• Element <type> defines a simple encoding

• Element <composite> defines a composite encoding

• Element <enum> defines an enumeration

• Element <set> defines a multi-value choice bitset encoding

Encoding name

The namespace for encoding names is global across all encodings included
in a schema, including simple, composite and enumeration types. That is,
the name must be unique among all encoding instances.

All symbolic names should be alphanumeric without spaces.

Importing encodings

A suggested usage is to import common encodings that are used across
message schemas as one set while defining custom encodings that are
particular to a schema in another set.

Example of XML include usage to import common encoding types

<!-- included XML contains a <types> element -->
<xi:include href="sbe-builtins.xml"/>

Simple encodings

A simple encoding is backed by either a scalar type or an array of
scalars, such as a character array. One or more simple encodings may be
defined, each specified by a <type> element.

<type> element content

If the element has a value, it is used to indicate a special value of
the encoding.

Constant value

The element value represents a constant if attribute
presence="constant". In this case, the value is conditionally required.

<type> attributes

<type>
attribute Description XML type Usage Valid values

name Name of encoding symbolicName_t required Must be unique
among all
encoding types
in a schema.

description Documentation of the
type

string optional

presence Presence of any field
encoded with this
type

token required
optional
constant

nullValue Override of special
value used to
indicate null for an
optional field

string Only
valid if
presence
=
optional

The XML string
must be
convertible to
the scalar data
type specified by
primitiveType.

minValue Lowest acceptable
value

string

maxValue Highest acceptable
value

string

length Number of elements
of the primitive data
type

nonnegativeInteger default =
1

Value “0”
represents
variable length.

offset If a member of a
composite type, tells
the offset from the
beginning of the
composite. By
default, the offset is
the sum of preceding
element sizes, but it
may be increased to
effect byte alignment.

unsignedInt optional See section
4.4.4.3 below

primitiveType The primitive data
type that backs the
encoding

token required char int8 int16
int32 int64 uint8
uint16 uint32
uint64 float
double

semanticType Represents a FIX data
type

token optional Same as field
semanticType –
see below.

sinceVersion Documents the
version of a schema
in which a type was
added

nonnegativeInteger default =
0

Must be less than
or equal to the
version of the
message schema.

deprecated Documents the
version of a schema
in which a type was
deprecated. It should
no longer be used in

nonnegativeInteger optional Must be less than
or equal to the
version of the
message schema.

new messages.

FIX data type specification

The attribute semanticType must be specified on either a field or on its
corresponding type encoding. It need not be specified in both places,
but if it is, the two values must match.

Simple type examples

<type name="FLOAT" primitiveType="double"
 semanticType="float"/>
<type name="TIMESTAMP" primitiveType="uint64"
 semanticType="UTCTimestamp"/>
<type name="GeneralIdentifier" primitiveType="char"
 description="Identifies class or source
 of the PartyID" presence="constant">C</type>

Composite encodings

Composite encoding types are composed of two or more simple types.

<composite> attributes

<composite>
attribute Description XML type Usage Valid values

name Name of encoding symbolicName_t required Must be unique
among all
encoding types.

offset The offset from the
beginning of the
composite. By default,
the offset is the sum of
preceding element
sizes, but it may be
increased to effect
byte alignment.

unsignedInt optional

description Documentation of the
type

string optional

semanticType Represents a FIX data
type

token optional Same as field
semanticType –
see below.

sinceVersion Documents the version
of a schema in which a
type was added

nonnegativeInteger default =
0

Must be less
than or equal to
the version of
the message
schema.

deprecated Documents the version
of a schema in which a
type was deprecated.
It should no longer be
used in new messages.

nonnegativeInteger optional Must be less
than or equal to
the version of
the message
schema.

Composite type elements

A <composite> composite encoding element may be composed of any
combination of types, including <type> simple encoding, <enum>
enumeration, <set> bitset, and nested composite type. The elements
that compose a composite type carry the same XML attributes as
stand-alone types.

Composite type example

In this example, a Price is encoded as 32 bit integer mantissa and a
constant exponent, which is not sent on the wire.

<composite name="decimal32" semanticType="Price">
 <type name="mantissa" primitiveType="int32" />
 <type name="exponent" primitiveType="int8"
 presence="constant">-4</type>
</composite>

Element offset within a composite type

If a message designer wishes to control byte boundary alignment or map
to an existing data structure, element offset may optionally be
specified on a simple type, enum or bitset within a composite type. Offset is the number
of octets from the start of the composite; it is a zero-based index.

If specified, offset must be greater than or equal to the sum of the
sizes of prior elements. In other words, an offset is invalid if it
would cause elements to overlap.

Null value of a composite type

For a composite type, nullness is indicated by the value of its first
element. For example, if a price field is optional, a null value in its
mantissa element indicates that the price is null.

Reference to reusable types

A composite type often has its elements defined in-line within the <composite> XML
element as shown in the example above. Alternatively, a common type may be defined once
on its own, and then referred to by name with the composite type using a <ref> element.

<ref> attributes

<ref>
attribute Description XML type Usage Valid values

name Usage of the type in this
composite

symbolicName_t required

type Name of referenced
encoding

symbolicName_t required Must match a
defined type,
enum or set or
composite
name attribute.

offset The offset from the
beginning of the
composite. By default,
the offset is the sum of
preceding element sizes,
but it may be increased
to effect byte alignment.

unsignedInt optional

sinceVersion Documents the version
of a schema in which a
type was added

nonnegativeInteger default =
0

Must be less
than or equal to
the version of
the message
schema.

deprecated Documents the version
of a schema in which a
type was deprecated. It
should no longer be used
in new messages.

nonnegativeInteger optional Must be less
than or equal to
the version of
the message
schema.

Type reference examples

Reference to an enum

In this example, a futuresPrice is encoded as 64 bit integer mantissa, 8 bit exponent, and a
reused enum type.

<enum name="booleanEnum" encodingType="uint8" semanticType="Boolean">
 <validValue name="false">0</validValue>
 <validValue name="true">1</validValue>
</enum>

<composite name="futuresPrice">
 <type name="mantissa" primitiveType="int64" />
 <type name="exponent" primitiveType="int8" />
 <ref name="isSettlement" type="boolEnum" />
</composite>

Reference to a composite type

In this example, a nested composite is formed by using a reference to another composite
type. It supports the expresson of a monetary amount with its currency, such as
USD150.45. Note that a reference may carry an offset within the composite encoding that
contains it.

<composite name="price">
 <type name="mantissa" primitiveType="int64" />
 <type name="exponent" primitiveType="int8" />
</composite>

<composite name="money">
 <type name="currencyCode" primitiveType="char" length="3"
semanticType="Currency" />
 <ref name="amount" type="price" semanticType="Price" offset="3" />
</composite>

Enumeration encodings

An enumeration explicitly lists the valid values of a data domain. Any
number of fields may share the same enumeration.

<enum> element

Each enumeration is represented by an <enum> element. It contains any
number of <validValue> elements.

The encodingType attribute refers to a simple encoding of scalar type.
The encoding of an enumeration may be char or any unsigned integer type.

<enum>
attribute Description XML type Usage Valid values

name Name of encoding symbolicName_t required Must be
unique among
all encoding
types.

description Documentation of the
type

string optional

encodingType Name of a simple
encoding type

symbolicName_t required Must match
the name
attribute of a
scalar <type>
element or a
primitive type:
char uint8
uint16 uint32
uint64

sinceVersion Documents the version nonnegativeInteger default = Must be less

of a schema in which a
type was added

0 than or equal
to the version
of the message
schema.

deprecated Documents the version
of a schema in which a
type was deprecated. It
should no longer be used
in new messages.

nonnegativeInteger optional Must be less
than or equal
to the version
of the message
schema.

offset If a member of a
composite type, tells the
offset from the beginning
of the composite. By
default, the offset is the
sum of preceding
element sizes, but it may
be increased to effect
byte alignment.

unsignedInt optional

<validValue> element attributes

The name attribute of the <validValue> uniquely identifies it.

<validValue>
attribute Description XML type Usage Valid values

name Symbolic name of
value

symbolicName_t required Must be unique
among valid
values in the
enumeration.

description Documentation of the
value

string optional

sinceVersion Documents the
version of a schema in
which a value was
added

nonNegativeInteger default =
0

deprecated Documents the
version of a schema in
which a value was
deprecated. It should
no longer be used in
new messages.

nonnegativeInteger optional Must be less
than or equal to
the version of
the message
schema.

<validValue> element content

The element is required to carry a value, which is the valid value as a
string. The string value in XML must be convertible to the data type of
the encoding, such as an integer.

<enum> and <validValue> elements

Enumeration example (not all valid values listed)

This enumeration is encoded as an 8 bit unsigned integer value. Others
are encoded as char codes.

<type name="intEnum" primitiveType="uint8" />

<enum name="PartyRole" encodingType="intEnum">
 <validValue name="ExecutingFirm">1</validValue>
 <validValue name="BrokerOfCredit">2</validValue>
 <validValue name="ClientID">3</validValue>
 <validValue name="ClearingFirm">4</validValue>
</enum>

Multi-value choice encodings (bitset)

An enumeration explicitly lists the valid values of a data domain. Any
number of fields may share the same set of choices.

<set> element

Each multi-value choice is represented by a <set> element. It may
contain a number of <choice> elements up to the number of bits in the
primitive encoding type. The largest number possible is 64 choices in a
uint64 encoding.

The encodingType attribute refers to a simple encoding of scalar type.
The encoding of a bitset should be an unsigned integer type.

<set>
attribute Description XML type Usage Valid values

name Name of encoding symbolicName_t required Must be
unique among
all encoding
types.

description Documentation of the
type

string optional

encodingType Name of a simple
encoding type

string required Must match
the name
attribute of a
scalar <type>

element or a
primitive
type: uint8
uint16 uint32
uint64

sinceVersion Documents the version
of a schema in which a
type was added

nonnegativeInteger default =
0

Must be less
than or equal
to the version
of the
message
schema.

deprecated Documents the version
of a schema in which a
type was deprecated. It
should no longer be used
in new messages.

nonnegativeInteger optional Must be less
than or equal
to the version
of the
message
schema.

offset If a member of a
composite type, tells the
offset from the beginning
of the composite. By
default, the offset is the
sum of preceding
element sizes, but it may
be increased to effect
byte alignment.

unsignedInt optional

<choice> element attributes

The name attribute of the <choice> uniquely identifies it.

<choice>
attribute Description XML type Usage Valid values

name Symbolic name of value symbolicName_t required Must be
unique among
choices in the
set.

description Documentation of the
value

string optional

sinceVersion Documents the version of
a schema in which a
choice was added

nonNegativeInteger default =
0

deprecated Documents the version of
a schema in which a
choice was deprecated. It

nonnegativeInteger optional Must be less
than or equal
to the version

should no longer be used
in new messages.

of the
message
schema.

< choice > element content

The element is required to carry a value, which is an unsigned integer
representing a zero-based index to a bit within a bitset. Zero is the
least significant bit.

<set> and <choice> XML elements

Multi-value choice example, The choice is encoded as a bitset.

<type name="bitset" primitiveType="uint8" />

<set name="Scope" encodingType="bitset" >
 <choice name="LocalMarket">0</choice>
 <choice name="National">1</choice>
 <choice name="Global">2</choice>
</set>

Message template

To define a message type, add a <message> element to the root element
of the XML document, <messageSchema>.

The name and id attributes are required. The first is a display name for
a message, while the latter is a unique numeric identifier, commonly
called template ID.

Reserved space

By default, message size is the sum of its field lengths. However, a
larger size may be reserved by setting blockLength, either to allow for
future growth or for desired byte alignment. If so, the extra reserved
space should be filled with zeros by message encoders.

Message members

A <message> element contains its field definitions in three
categories, which must appear in this sequence:

1. Element <field> defines a fixed-length field

2. Element <group> defines a repeating group

3. Element <data> defines a variable-length field, such as raw data

The number of members of each type is unbound.

Member order

The order that fields are listed in the message schema governs the order
that they are encoded on the wire.

<message> element attributes

<message>
attribute Description XML type Usage Valid values

name Name of a message symbolicName_t required Must be unique
among all
messages in a
schema

id Unique message
template identifier

unsignedInt required Must be unique
within a schema

description Documentation string optional

blockLength Reserved size in
number of octets for
root level of message
body

unsignedInt optional If specified,
must be greater
than or equal to
the sum of field
lengths.

semanticType Documents value of
FIX MsgType for a
message

token optional Listed in FIX
specifications

sinceVersion Documents the
version of a schema in
which a message was
added

nonNegativeInteger default =
0

deprecated Documents the
version of a schema in
which a message was
deprecated. It should
no longer be sent but
is documented for
back-compatibility.

nonnegativeInteger optional Must be less
than or equal to
the version of
the message
schema.

Note that there need not be a one-to-one relationship between message
template (identified by id attribute) and semanticType attribute. You
might design multiple templates for the same FIX MsgType to optimize
different scenarios.

Example <message> element

<sbe:message name="NewOrderSingle" id="2" semanticType="D">

Field attributes

Fields are added to a <message> element as child elements. See Field
Encoding section above for a listing of all field types.

These are the common attributes of all field types.

Schema
attribute Description XML type Usage Valid values

name Name of a field symbolicName_t required Name and id must
uniquely identify a
field type within a
message schema.

id Unique field
identifier (FIX tag)

unsignedShort required

description Documentation string optional

type Encoding type
name, one of
simple type,
composite type or
enumeration.

string required Must match the
name attribute of a
simple <type>,
<composite>
encoding type,
<enum> or <set>.

offset Offset to the start
of the field within
a message or
repeating group
entry. By default,
the offset is the
sum of preceding
field sizes, but it
may be increased
to effect byte
alignment.

unsignedInt optional Must be greater
than or equal to the
sum of preceding
field sizes.

presence Field presence enumeration Default =
required

required = field
value is required;
not tested for null.
optional = field
value may be null.
constant = constant
value not sent on
wire.

valueRef Constant value of
a field as a valid
value of an

qualifiedName_t optional
Valid only
if

If provided, the
qualified name
must match the

enumeration presence=
”constant”

name attribute of a
<validValue>
within an <enum>

sinceVersion The version of a
message schema
in which this field
was added.

InonnegativeInteger default=0 Must not be greater
than version
attribute of
<messageSchema>
element.

deprecated Documents the
version of a
schema in which a
field was
deprecated. It
should no longer
be used in new
messages.

nonnegativeInteger optional Must be less than
or equal to the
version of the
message schema.

Example field schemas

Field that uses a composite encoding

<composite name="intQty32" semanticType="Qty">
 <type name="mantissa" primitiveType="int32" />
 <type name="exponent" primitiveType="int8"
 presence="constant">0\</type>
</composite>

<field type="intQty32" name="OrderQty" id="38" offset="16"
 description="Shares: Total number of shares" />

Repeating group schema

A <group> has the same attributes as a <message> element since they
both inherit attributes from the blockType XML type. A group has the
same child members as a message, and they must appear in the same order:

1. Element <field> defines a fixed-length field

2. Element <group> defines a repeating group. Groups may be nested to
any level.

3. Element <data> defines a variable-length field, such as raw data

The number of members of each type is unbound.

<group>
attribute Description XML type Usage Valid values

name Name of a group symbolicName_t required Name and id

must
uniquely
identify a
group type
within a
message
schema.

id Unique group
identifier

unsignedShort required

description Documentation string optional

dimensionType Dimensions of
the repeating
group

symbolicName_t default =
groupSizeEncoding

If specified,
must be
greater than
or equal to
the sum of
field lengths.

<group> element inherits attributes of blockType. See <message>
above.

Example group schema with default dimension encoding

<composite name="groupSizeEncoding">
 <type name="blockLength" primitiveType="uint16"/>
 <type name="numInGroup" primitiveType="uint16"
 semanticType="NumInGroup"/>
</composite>

<group name="Parties" id="1012" >
 <field type="string14" name="PartyID" id="448" />
 <field type="partyRoleEnum" name="PartyRole" id="452" />
</group>

Schema validation

The first level of schema validation is enforced by XML schema
validation tools to make sure that a schema is well-formed according to
XSD schema rules. Well-formed XML is necessary but insufficient to prove
that a schema is correct according to FIX Simple Binary Encoding rules.

Additional conditions that render a schema invalid include the
following.

Error condition Error description

Missing field encoding A field or <enum> references a type name that is undefined.

Missing message
header encoding

Missing encoding type for headerType specified in
<messageSchema>. Default name is “messageHeader”.

Duplicate encoding
name

An encoding name is non-unique, rendering a reference
ambiguous.

nullValue specified for
non-null encoding

Attribute nullValue is inconsistent with presence=required or
constant

Attributes nullValue,
minValue or
maxValue of wrong
data range

The specified values must be convertible to a scalar value
consistent with the encoding. For example, if the primitive type is
uint8, then the value must be in the range 0 through 255.

semanticType
mismatch

If the attribute is specified on both a field and the encoding that it
references, the values must be identical.

presence mismatch If the attribute is specified on both a field and the encoding that it
references, the values must be identical.

Missing constant
value

If presence=constant is specified for a field or encoding, the
element value must contain the constant value.

Missing validValue
content

A <validValue> element is required to carry its value.

Incompatible offset
and blockLength

A field offset greater than message or group blockLength is invalid

Duplicate ID or name
of field or group

Attributes id and name must uniquely identify a type within a
message schema. This applies to fields and groups. To be clear, the
same field or group ID may be used in multiple messages, but each
instance must represent the same type. Each of those instances
must match on both id and name attributes.

Message with a repeating group

<message name="ListOrder" id="2" description="Simplified
 NewOrderList. Demonstrates repeating group">
 <field name="ListID" id="66" type="string14" semanticType="String"/>
 <field name="BidType" id="394" type="uint8" semanticType="int"/>
 <group name="ListOrdGrp" id="2030" >
 <field name="ClOrdID" id="11" type="string14" semanticType="String"/>
 <field name="ListSeqNo" id="67" type="uint32" semanticType="int"/>
 <field name="Symbol" id="55" type="string8" semanticType="String"/>
 <field name="Side" id="54" type="char" semanticType="char"/>
 <field name="OrderQty" id="38" type="intQty32" semanticType="Qty"/>
 </group>
</message>

Message with raw data fields

<message name="UserRequest" id="4" description="Demonstrates raw data usage">
 <field name="UserRequestId" id="923" type="string14"
semanticType="String"/>
 <field name="UserRequestType" id="924" type="uint8" semanticType="int"/>
 <field name="UserName" id="553" type="string14" semanticType="String"/>

 <field name="Password" id="554" type="string14" semanticType="String"/>
 <field name="NewPassword" id="925" type="string14"
semanticType="String"/>
 <field name="EncryptedPasswordMethod" id="1400" type="uint8"
description="This should be an enum but values undefined."
 semanticType="int"/>
 <field name="EncryptedPasswordLen" id="1401" type="uint8"
semanticType="Length"/>
 <field name="EncryptedNewPasswordLen" id="1403" type="uint8"
semanticType="Length"/>
 <field name="RawDataLength" id="95" type="uint8" semanticType="Length"/>
 <data name="EncryptedPassword" id="1402" type="rawData"
semanticType="data"/>
 <data name="EncryptedNewPassword" id="1404" type="rawData"
semanticType="data"/>
 <data name="RawData" id="96" type="rawData" semanticType="data"/>
</message>

Reserved element names

Composite types
Encoding type name (default names)

messageHeader

groupSizeEncoding

Composite type elements
Type name Composite type

blockLength messageHeader and groupSize

day MonthYear

exponent decimal

mantissa decimal

month MonthYear

numInGroup groupSize

templateId messageHeader

time timestamp, TZ time

timezoneHour TZ time

timezoneMinute TZ time

unit timestamp, TZ time

version messageHeader

week MonthYear

year MonthYear

Schema Extension Mechanism

Objective

It is not always practical to update all message publishers and
consumers simultaneously. Within certain constraints, message schemas
and wire formats can be extended in a controlled way. Consumers using an
older version of a schema should be compatible if interpretation of
added fields or messages is not required for business processing.

This specification only details compatibility at the presentation layer. It does not relieve
application developers of any responsibility for carefully planning a migration strategy and
for handling exceptions at the application layer.

Constraints

Compatibility is only ensured under these conditions:

• Fields may be added to either the root of a message or to a
repeating group, but in each case, they must be appended to end of a
block.

• Existing fields cannot change data type or move within a message.

• A repeating group may be added, but only after existing groups and
if there are no subsequent variable data elements at the end of the
message.

• A variable data element may be added, but only after existing groups
and data.

• Message header encoding cannot change.

• In general, metadata changes such as name or description corrections do not break
compatibility so long as
wire format does not change.

Changes that break those constraints require consumers to update to the
current schema used by publishers. An message template that has changed in an
incompatible way must be assinged a new template "id" attribute.

Message schema features for extension

Schema version

The <messageSchema> root element contains a version number attribute.
By default, version is zero, the initial version of a message schema.
Each time a message schema is changed, the version number is
incremented.

Version applies to the schema as a whole, not to individual elements.
Version is sent in the message header so the consumer can determine
which version of the message schema was used to encode the message.

See section 4.3.1 above for schema attributes.

Since version

When a new field, enumeration value, group or message is added to a message schema, the
extension may be documented by adding a sinceVersion attribute to the
element. The sinceVersion attribute tells in which schema version the
element was added. This attribute remains the same for that element for
the lifetime of the schema. This attribute is for documentation purposes
only, it is not sent on the wire.

Over time, multiple extensions may be added to a message schema. New
fields must be appended following earlier extensions. By documenting
when each element was added, it possible to verify that extensions were
appended in proper order.

Block length

The length of the root level of the message may optionally be documented
on a <message> element in the schema using the blockLength attribute.
See section 4.5.3 above for message attributes. If not set in the
schema, block length of the message root is the sum of its field
lengths. Whether it is set in the schema or not, the block length is
sent on the wire to consumers.

Likewise, a repeating group has a blockLength attribute to tell how much
space is reserved for group entries, and the value is sent on the wire.
It is encoded in the schema as part of the NumInGroup field encoding.
See section 3.4.8.2 above.

Deprecated elements

A message schema may document obsolete elements, such as messages,
fields, and valid values of enumerations with deprecated attribute.
Updated applications should not publish deprecated messages or values,
but declarations may remain in the message schema during a staged
migration to replacement message layouts.

Wire format features for extension

Message size

It is assumed that a either message boundaries are delimited by a
transport or session protocol header conveys the size of the whole

message. See section 3.1 above. This enables a consumer to properly
frame messages even when the message has been lengthened in a later
version of the schema.

Block size

The length of the root level of the message is sent on the wire in the
SBE message header. See section 3.2.2 above. Therefore, if new fields
were appended in a later version of the schema, the consumer would still
know how many octets to consume to find the next message element, such
as repeating group or variable-length Data field. Without the current
schema version, the consumer cannot interpret the new fields, but it
does not break parsing of earlier fields.

Likewise, block size of a repeating group is conveyed in the NumInGroup
encoding.

Comaptibility strategy

This suggested strategy is non-normative.

A message decoder compares the schema version in a received message header to the
version that the decoder was built with.

If the received version is equal to the decoder's version, then all fields known to the decoder
may be parsed, and no further analysis is required.

If the received version is greater than the decoder's version (that is, the producer's encoder is
newer than the consumer's decoder), then all fields known to the decoder may be parsed
but it will be unable to parse added fields.

Also, an old decoder may encounter unexpected enumeration values. The application layer
determines whether an unexpected value is a fatal error. Probably so for a required field
since the business meaning is unknown, but it may choose to allow an unknown value of an
optional field to pass through. For example, if OrdType value J="Market If Touched" is
added to a schema, and the consumer does not recognize it, then the application returns an
order rejection with reason "order type not supported", even if it does not know what "J"
represents. Note that this is not strictly a versioning problem, however. This exception
handling is indistinguishable from the case where "J" was never added to the enum but was
simply sent in error.

If the received version is less than the decoder's version (that is, the producer's encoder is
older than the consumer's decoder), then only the fields of the older version may be
parsed. This information is available through metadata as "sinceVersion" attribute of a
field. If sinceVersion is greater than received schema version, then the field is not available.
How a decoder signals an application that a field is unavailable is an implementation detail.
One strategy is for an application to provide a default value for unavailable fields.

Message schema extension example

Initial version of a message schema

<messageSchema package="FIXBinaryTest" byteOrder="littleEndian">
 <types>
 <type name="int8" primitiveType="int8"/>
 </types>

<message name="FIX Binary Message1" id="1" blockLength="4">
 <field name="Field1" id="1" type="int8" semanticType="int"/>
</message>

</messageSchema>

Second version - a new message is added

<messageSchema package="FIXBinaryTest" byteOrder="littleEndian"
 version="1">

<types>
 <type name="int8" primitiveType="int8"/>
 <type name="int16" primitiveType="int16"
 sinceVersion="1"/>
</types>

<message name="FIX Binary Message1" id="1" blockLength="4">
 <field name="Field1" id="1" type="int8" semanticType="int"/>
</message>

<!-- New message added in this version-->
<message name="FIX Binary Message2" id="2" blockLength="4"
 sinceVersion="1">
 <field name="Field2" id="2" type="int16" semanticType="int"/>
</message>
</messageSchema>

Third version - a field is added

<messageSchema package="FIXBinaryTest" byteOrder="littleEndian"
 version="2">

<types>
 <type name="int8" primitiveType="int8"/>
 <type name="int16" primitiveType="int16"
 sinceVersion="1"/>
 <type name="int32" primitiveType="int32"
 sinceVersion="2"/>
</types>

<message name="FIX Binary Message1" id="1" blockLength="8">
 <field name="Field1" id="1" type="int8" semanticType="int"/>
 <field name="Field11" id="11" type="int32" semanticType="int"
 sinceVersion="2"/>
</message>

<message name="FIX Binary Message2" id="2" blockLength="4"
 sinceVersion="1">
 <field name="Field2" id="2" type="int16" semanticType="int"/>
</message>
</messageSchema>

Usage Guidelines

Identifier encodings

FIX specifies request and entity identifiers as String type. Common
practice is to specify an identifier field as fixed-length character of
a certain size.

Optionally, a message schema may restrict such identifiers to numeric
encodings.

Example of an identifier field with character encoding

<type name="idString" primitiveType="char" length="16" />

<field name="QuoteReqId" id="131" type="idString"

 semanticType="String"/>

Example of an identifier field with numeric encoding

<type name="uint64" primitiveType="uint64" />

<field name="QuoteReqId" id="131" type="uint64"
 semanticType="String"/>

Examples

The example messages are preceded by Simple Open Framing Header. Note
that SOFH encoding is always big-endian, regardless of the byte order of
the SBE message body. See that FIX standard for details.

Not all FIX enumeration values are listed in the samples.

Flat, fixed-length message

This is an example of a simple, flat order message without repeating
groups or variable-length data.

Sample order message schema

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>`

<sbe:messageSchema
 xmlns:sbe="http://fixprotocol.io/sbe/rc4"
 xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"
 package="Examples" id="100"
 description="Test dictionary"

 byteOrder="littleEndian"
 xsi:schemaLocation="http://fixprotocol.io/sbe/rc4 SimpleBinary1-0.xsd">
<types>
 <type name="enumEncoding" primitiveType="char"/>
 <type name="idString" length="8" primitiveType="char"
semanticType="String"/>
 <type name="timestampEncoding" primitiveType="uint64"
semanticType="UTCTimestamp"/>

 <composite name="messageHeader">
 <type name="blockLength" primitiveType="uint16"/>
 <type name="templateId" primitiveType="uint16"/>
 <type name="schemaId" primitiveType="uint16"/>
 <type name="version" primitiveType="uint16"/>
 </composite>

 <composite name="optionalDecimalEncoding"
 description="Optional decimal with constant exponent">
 <type name="mantissa" presence="optional" primitiveType="int64"/>
 <type name="exponent" presence="constant" primitiveType="int8">-
3</type>
 </composite>

 <composite name="qtyEncoding" description="Decimal constrained to
integers">
 <type name="mantissa" primitiveType="int32"/>
 <type name="exponent" presence="constant"
primitiveType="int8">0</type>
 </composite>

 <enum name="ordTypeEnum" encodingType="enumEncoding">
 <validValue name="Market" description="Market">1</validValue>
 <validValue name="Limit" description="Limit">2</validValue>
 <validValue name="Stop" description="Stop Loss">3</validValue>
 <validValue name="StopLimit" description="Stop Limit">4</validValue>
 </enum>

 <enum name="sideEnum" encodingType="enumEncoding">
 <validValue name="Buy" description="Buy">1</validValue>
 <validValue name="Sell" description="Sell">2</validValue>
 </enum>

</types>

<sbe:message name="NewOrderSingle" id="99" blockLength="54"
semanticType="D">
 <field name="ClOrdID" id="11" type="idString" description="Customer Order
ID"
 offset="0" semanticType="String"/>

 <field name="Account" id="1" type="idString" description="Account
mnemonic"
 offset="8" semanticType="String"/>
 <field name="Symbol" id="55" type="idString" description="Security ID"
 offset="16" semanticType="String"/>
 <field name="Side" id="54" type="sideEnum" description="Side" offset="24"
 semanticType="char"/>
 <field name="TransactTime" id="60" type="timestampEncoding"
 description="Order entry time" offset="25"
semanticType="UTCTimestamp"/>
 <field name="OrderQty" id="38" type="qtyEncoding" description="Order
quantity"
 offset="33" semanticType="Qty"/>
 <field name="OrdType" id="40" type="ordTypeEnum" description="Order type"
 offset="37" semanticType="char"/>
 <field name="Price" id="44" type="optionalDecimalEncoding"
 description="Limit price" offset="38" semanticType="Price"/>
 <field name="StopPx" id="99" type="optionalDecimalEncoding"
 description="Stop price" offset="46" semanticType="Price"/>
</sbe:message>

</sbe:messageSchema>

Notes on the message schema

In this case, there is a lot of verbiage for one message, but in
practice, a schema would define a set of messages. The same encodings
within the <types> element would be used for a whole collection of
messages. For example, a price encoding need only be defined once but
can be used in any number of messages in a schema. Many of the
attributes, such as description, offset, and semanticType, are optional
but are shown here for a full illustration.

All character fields in the message are fixed-length. Values may be
shorter than the specified field length, but not longer. Since all
fields are fixed-length, they are always in a fixed position, supporting
direct access to data.

An enumeration gives the valid values of a field. Both enumerations in
the example use character encoding, but note that some enumerations in
FIX are of integer type.

There are two decimal encodings. The one used for quantity sets the
exponent to constant zero. In effect there is no fractional part and
only the mantissa is sent on the wire, acting as an integer. However,
FIX defines Qty as a float type since certain asset classes may use
fractional shares.

The other decimal encoding is used for prices. The exponent is
constant -3. In essence, each price is transmitted as an integer on the
wire with assumed three decimal places. Each of the prices in the
message is conditionally required. If OrdType=Limit, then Price field
required. If OrdType=Stop then StopPx is required. Otherwise, if
OrdType=Market, then neither price is required. Therefore, the price
takes an optional encoding. To indicate that it is null, a special value
is sent on the wire. See the table in section 2.4.2 above for the null
value of the int64 mantissa.

In this example, all fields are packed without special byte alignment.
Performance testing may prove better results with a different
arrangement of the fields or adjustments to field offsets. However,
those sorts of optimizations are platform dependent.

Wire format of an order message

Hexadecimal and ASCII representations (little-endian byte order):

00 00 00 44 eb 50 36 00 63 00 64 00 00 00 4f 52 : D P6 c d OR

44 30 30 30 30 31 41 43 43 54 30 31 00 00 47 45 :D00001ACCT01 GE

4d 34 00 00 00 00 31 00 84 68 90 fe a8 9a 13 07 :M4 1 h

00 00 00 32 1a 85 01 00 00 00 00 00 00 00 00 00 : 2

00 00 00 80

Interpretation

Wire format
Field

ID
Name Offset Length

Interpreted

value

00000044

Simple Open

Framing

Header

4
Message

size=68

eb50

Simple Open

Framing

Header

2

SBE version

1.0 little-

endian

Wire format
Field

ID
Name Offset Length

Interpreted

value

3600

messageHeader

blockLength

2
Root block

size=54

6300

messageHeader

templateId

2
Template

ID=99

6400

messageHeader

schemaId

2
Schema

ID=100

0000

messageHeader

version

2
Schema

version=0

4f52443030303031 11 ClOrdID 0 8 ORD00001

4143435430310000 1 Account 8 8 ACCT01

47454d3400000000 55 Symbol 16 8 GEM4

31 54 Side 24 1 1 Buy

c021ed1b04c32b13 60 TransactTime 25 8

2013-10-10

13:35:33.135

as

nanoseconds

since UNIX

Wire format
Field

ID
Name Offset Length

Interpreted

value

epoch

07000000 38 OrderQty 33 4 7

32 40 OrdType 37 1 2 Limit

1a85010000000000 44 Price 38 8 99.610

0000000000000008 99 StopPx 46 8 null

Message with a repeating group

This is an example of a message with a repeating group.

Sample execution report message schema

Add this encoding types element to those in the previous example.

<types>
 <type name="date" primitiveType="uint16" semanticType="LocalMktDate"/>
 <composite name="MONTH_YEAR" semanticType="MonthYear">
 <type name="year" primitiveType="uint16"/>
 <type name="month" primitiveType="uint8"/>
 <type name="day" primitiveType="uint8"/>
 <type name="week" primitiveType="uint8"/>
 </composite>

 <composite name="groupSizeEncoding" description="Repeating group
dimensions">
 <type name="blockLength" primitiveType="uint16"
 semanticType="Length"/>
 <type name="numInGroup" primitiveType="uint16"
 semanticType="NumInGroup"/>
 </composite>

 <enum name="execTypeEnum" encodingType="enumEncoding">

 <validValue name="New" description="New">0</validValue>
 <validValue name="DoneForDay" description="Done for
day">3</validValue>
 <validValue name="Canceled" description="Canceled">4</validValue>
 <validValue name="Replaced" description="Replaced">5</validValue>
 <validValue name="PendingCancel">6</validValue>
 <validValue name="Rejected" description="Rejected">8</validValue>
 <validValue name="PendingNew" description="Pending
New">A</validValue>
 <validValue name="Trade" description="partial fill or
fill">F</validValue>
 </enum>

 <enum name="ordStatusEnum" encodingType="enumEncoding">
 <validValue name="New" description="New">0</validValue>
 <validValue name="PartialFilled">1</validValue>
 <validValue name="Filled" description="Filled">2</validValue>
 <validValue name="DoneForDay" description="Done for
day">3</validValue>
 <validValue name="Canceled" description="Canceled">4</validValue>
 <validValue name="PendingCancel">6</validValue>
 <validValue name="Rejected" description="Rejected">8</validValue>
 <validValue name="PendingNew" description="Pending
New">A</validValue>
 <validValue name="PendingReplace" >E</validValue>
 </enum>

</types>

<sbe:message name="ExecutionReport" id="98" blockLength="42"
semanticType="8">
 <field name="OrderID" id="37" type="idString" description="Order ID"
 offset="0" semanticType="String"/>
 <field name="ExecID" id="17" type="idString" description="Execution ID"
 offset="8" semanticType="String"/>
 <field name="ExecType" id="150" type="execTypeEnum"
 description="Execution type" offset="16" semanticType="char"/>
 <field name="OrdStatus" id="39" type="ordStatusEnum"
 description="Order status" offset="17" semanticType="char"/>
 <field name="Symbol" id="55" type="idString" description="Security ID"
 offset="18" semanticType="String"/>
 <field name="MaturityMonthYear" id="200" type="MONTH_YEAR"
 description="Expiration" offset="26" semanticType="MonthYear"/>
 <field name="Side" id="54" type="sideEnum" description="Side" offset="31"
 semanticType="char"/>
 <field name="LeavesQty" id="151" type="qtyEncoding"
 description="Quantity open" offset="32" semanticType="Qty"/>
 <field name="CumQty" id="14" type="qtyEncoding"
 description="Executed quantity" offset="36" semanticType="Qty"/>
 <field name="TradeDate" id="75" type="date"

 description="Trade date" offset="40" semanticType="LocalMktDate"/>
 <group name="FillsGrp" id="2112" description="Partial fills"
 blockLength="12" dimensionType="groupSizeEncoding">
 <field name="FillPx" id="1364" type="optionalDecimalEncoding"
 description="Price of partial fill" offset="0" semanticType="Price"/>
 <field name="FillQty" id="1365" type="qtyEncoding"
 description="Executed quantity" offset="8" semanticType="Qty"/>
 </group>
</sbe:message>

Notes on the message schema

The message contains a MonthYear field. It is encoded as a composite
type with year, month, day and week subfields.

This message layout contains a repeating group containing a collection
of partial fills for an execution report. The <group> XML tag enclosed
the fields within a group entry. The dimensions of the repeating group
are encoding as a composite type called groupSizeEncoding.

Wire format of an execution message

Hexadecimal and ASCII representations (little-endian byte order):

00 00 00 54 eb 50 2a 00 62 00 64 00 00 00 4f 30 : T P* b d O0

30 30 30 30 30 31 45 58 45 43 30 30 30 30 46 31 :000001EXEC0000F1

47 45 4d 34 00 00 00 00 de 07 06 ff ff 31 01 00 :GEM4 1

00 00 06 00 00 00 dd 3f 0c 00 02 00 1a 85 01 00 : ?

00 00 00 00 02 00 00 00 24 85 01 00 00 00 00 00 : $

04 00 00 00

Interpretation

Offset is from beginning of block.

Wire format
Field

ID Name Offset Length Interpreted value

00000054 Simple Open Framing
Header

 4 Message size=84

eb50 Simple Open Framing
Header

 2 SBE version 1.0
little-endian

2a00 messageHeader
blockLength

 2 Root block size=42

6200 messageHeader
templateId

 2 Template ID=98

6400 messageHeader 2 Schema ID=100

schemaId

0000 messageHeader
version

 2 Schema version=0

4f30303030303031 37 OrderID 0 8 O0000001

4558454330303030 17 ExecID 8 8 EXEC0000

46 150 ExecType 16 1 F Trade

31 39 OrdStatus 17 1 1 PartialFilled

47454d3400000000 55 Symbol 18 8 GEM4

de0706ffff 200 MaturityMonthYear 26 5 201406

31 54 Side 31 1 1 Buy

01000000 151 LeavesQty 32 4 1

06000000 14 CumQty 36 4 6

753e 75 TradeDate 40 2 2013-10-11

0c00 2112 groupSizeEncoding FillsGrp block
size=12

0200 1362 groupSizeEncoding FillsGrp
NumInGroup=2

1a85010000000000 1364 FillPx 0 8 FillsGrp instance 0

02000000 1365 FillQty 8 4 2

2485010000000000 1364 FillPx 0 8 FillsGrp instance 1

04000000 1365 FillQty 8 4 4

Message with a variable-length field

Sample business reject message schema

Add this encoding types element to those in the previous example.

<types>
 <type name="intEnumEncoding" primitiveType="uint8"/>

 <composite name="DATA" description="Variable-length data">
 <type name="length" primitiveType="uint16" />
 <type name="varData" length="0" primitiveType="uint8">
 </composite>

 <enum name="businessRejectReasonEnum" encodingType="intEnumEncoding">>
 <validValue name="Other">0</validValue>
 <validValue name="UnknownID">1</validValue>
 <validValue name="UnknownSecurity" >2</validValue>
 <validValue name="ApplicationNotAvailable" >4</validValue>
 <validValue name="NotAuthorized" >6</validValue>

 </enum>

</types>

 <sbe:message name="BusinessMessageReject" id="97"
 blockLength="9" semanticType="j">
 <field name="BusinesRejectRefId" id="379" type="idString"
 offset="0" semanticType="String" />
 <field name="BusinessRejectReason" id="380"
type="businessRejectReasonEnum"
 offset="8" semanticType="int" />
 <data name="Text" id="58" type="DATA" semanticType="data" />
 </sbe:message>

Wire format of a business reject message

Hexadecimal and ASCII representations (little-endian byte order):

00 00 00 40 eb 50 09 00 61 00 64 00 00 00 4f 52 : @ P a d OR

44 30 30 30 30 31 06 27 00 4e 6f 74 20 61 75 74 :D00001 ' Not aut

68 6f 72 69 7a 65 64 20 74 6f 20 74 72 61 64 65 :horized to trade

20 74 68 61 74 20 69 6e 73 74 72 75 6d 65 6e 74 : that instrument

Interpretation

Wire format
Field

ID
Name Offset Length

Interpreted

value

00000040

Simple Open

Framing Header
4

Message

size=64

eb50

Simple Open

Framing Header
2

SBE version

1.0 little-

endian

0900

messageHeader

blockLength
2

Root block

size=9

6100

messageHeader

templateId
2

Template

ID=100

6400

messageHeader

2 Schema ID=0

Wire format
Field

ID
Name Offset Length

Interpreted

value

schemaId

0000

messageHeader

version
2

Schema

version=0

4f524430303030

31
379

BusinessRejectR

efId
0 8 ORD00001

06 380
BusinessRejectR

eason
8 1

6

NotAuthoriz

ed

2700

DATA length

2 length=39

4e6f7420617574

68

6f72697a656420

74

6f207472616465

20

7468617420696e

73

7472756d656e74

DATA varData

39 Not

authorized to

trade that

instrument

Release Notes

Release Candidate 4
These issues were resolved and accepted for Release Candidate 4. See issues and pull
requests
in GitHub for details and changes.
Issue Description Section

2 Schema extension is vague in terms of what compatibility means 5

3 Extensibility of the Template ID 5

6 Limiting maximum occurences of repeating group 3

8 blockLength for repeating groups of variable length 3

11 Offsets within composite types 4

12 Composites reusing other types 4

Release Candidate 3

This is a summary of document changes to Release Candidate 3 from RC2.
Changes in this release were intended only as clarifications or to add
capabilities. Message schemas that conformed to the RC2 specification
should still conform to the RC3 wire format.

Section 1

References section expanded.

Section 2

• Statement added that non-FIX data types should not carry a
semanticType attribute in a message schema.

• String encoding section split into two sections for strings (text
fields) and data (non-character data) to clarify the distinction.
Both text and non-text can be either fixed-length <field> or
variable-length <data>.

• Timestamp encoding enhanced to allow time unit to either be
specified as a constant in a message schema or to be serialized on
the wire.

Section 3

Message structure is enhanced to allow variable-length <data> elements
within a repeating group entry.

Section 4

Message schema XSD updated to support <data> in repeating groups and
for various other refinements

Section 5

• Statements added to say whole repeating groups or variable data may
be added to a message without breaking compatibility so long as the
added elements are at the end of a message.

• Added deprecated schema attribute to mark obsolete elements.

Section 6

No change

Section 7

Examples updated to use Simple Open Framing Header.

Section 8

Release notes added.

