

For Global Technical Committee Governance Internal Use Only
Submission Date September 18, 2014 Control Number

Submission Status Submitted Ratified Date

Primary Contact Person Don Mendelson Release Identifier

 Copyright, 2011-2014, FIX Protocol, Limited

 FIX Performance Session Layer

Release Candidate 1

Technical Proposal

September 8, 2014

v0.15

Proposal Status: Public Review

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 2 of 40

DISCLAIMER

THE INFORMATION CONTAINED HEREIN AND THE FINANCIAL INFORMATION EXCHANGE PROTOCOL
(COLLECTIVELY, THE "FIX PROTOCOL") ARE PROVIDED "AS IS" AND NO PERSON OR ENTITY ASSOCIATED
WITH THE FIX PROTOCOL MAKES ANY REPRESENTATION OR WARRANTY, EXPRESS OR IMPLIED, AS TO
THE FIX PROTOCOL (OR THE RESULTS TO BE OBTAINED BY THE USE THEREOF) OR ANY OTHER MATTER
AND EACH SUCH PERSON AND ENTITY SPECIFICALLY DISCLAIMS ANY WARRANTY OF ORIGINALITY,
ACCURACY, COMPLETENESS, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. SUCH
PERSONS AND ENTITIES DO NOT WARRANT THAT THE FIX PROTOCOL WILL CONFORM TO ANY
DESCRIPTION THEREOF OR BE FREE OF ERRORS. THE ENTIRE RISK OF ANY USE OF THE FIX PROTOCOL IS
ASSUMED BY THE USER.

NO PERSON OR ENTITY ASSOCIATED WITH THE FIX PROTOCOL SHALL HAVE ANY LIABILITY FOR
DAMAGES OF ANY KIND ARISING IN ANY MANNER OUT OF OR IN CONNECTION WITH ANY USER'S USE
OF (OR ANY INABILITY TO USE) THE FIX PROTOCOL, WHETHER DIRECT, INDIRECT, INCIDENTAL, SPECIAL
OR CONSEQUENTIAL (INCLUDING, WITHOUT LIMITATION, LOSS OF DATA, LOSS OF USE, CLAIMS OF
THIRD PARTIES OR LOST PROFITS OR REVENUES OR OTHER ECONOMIC LOSS), WHETHER IN TORT
(INCLUDING NEGLIGENCE AND STRICT LIABILITY), CONTRACT OR OTHERWISE, WHETHER OR NOT ANY
SUCH PERSON OR ENTITY HAS BEEN ADVISED OF, OR OTHERWISE MIGHT HAVE ANTICIPATED THE
POSSIBILITY OF, SUCH DAMAGES.

DRAFT OR NOT RATIFIED PROPOSALS (REFER TO PROPOSAL STATUS AND/OR SUBMISSION STATUS ON
COVER PAGE) ARE PROVIDED "AS IS" TO INTERESTED PARTIES FOR DISCUSSION ONLY. PARTIES THAT
CHOOSE TO IMPLEMENT THIS DRAFT PROPOSAL DO SO AT THEIR OWN RISK. IT IS A DRAFT DOCUMENT
AND MAY BE UPDATED, REPLACED, OR MADE OBSOLETE BY OTHER DOCUMENTS AT ANY TIME. THE FPL
GLOBAL TECHNICAL COMMITTEE WILL NOT ALLOW EARLY IMPLEMENTATION TO CONSTRAIN ITS ABILITY
TO MAKE CHANGES TO THIS SPECIFICATION PRIOR TO FINAL RELEASE. IT IS INAPPROPRIATE TO USE FPL
WORKING DRAFTS AS REFERENCE MATERIAL OR TO CITE THEM AS OTHER THAN “WORKS IN PROGRESS”.
THE FPL GLOBAL TECHNICAL COMMITTEE WILL ISSUE, UPON COMPLETION OF REVIEW AND
RATIFICATION, AN OFFICIAL STATUS ("APPROVED") OF/FOR THE PROPOSAL AND A RELEASE NUMBER.

No proprietary or ownership interest of any kind is granted with respect to the FIX Protocol (or any
rights therein).

Copyright 2003-2014 FIX Protocol Limited, all rights reserved.

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 3 of 40

Table of Contents

Document History ... 5
1 Introduction .. 7

1.1 Authors .. 7
1.2 Relevant and Related Standards ... 8
1.3 Intellectual Property Disclosure .. 9
1.4 Definitions ... 10

2 Requirements ... 10
2.1 Business Requirements ... 10
2.2 Technical Requirements .. 10

3 FIX Performance Session Layer ... 12
3.1 Usage and naming conventions .. 12
3.2 Datatypes .. 12
3.3 FIXP Session Messages .. 12
3.4 Message Sequencing ... 13
3.5 Session Properties ... 14
3.6 Session Initiation and Negotiation .. 15
3.7 Session Establishment ... 17
3.8 Transport termination ... 19
3.9 Session heartbeat .. 20
3.10 Resynchronization ... 21
3.11 Finalizing a Session .. 22
3.12 Idempotent Flow ... 24

4 Session Messages ... 27
5 Appendix A - Usage Examples ... 28

5.1 Session Creation/Negotiation ... 28
5.2 Establishment and Reestablishment ... 30
5.3 Termination ... 34
5.4 Sequence ... 35
5.5 Multiplexing sessions .. 38

6 Appendix B – FIXP Rules of Engagement .. 40

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 4 of 40

Table of Figures
Figure 1 Session Negotiation Sequence Diagram ... 17
Figure 2 Session Establishment Sequence Diagram ... 19
Figure 3 Termination Session Sequence Diagram... 20
Figure 4 Retransmission Sequence Diagram ... 22
Figure 5 Recoverable Session Termination Sequence Diagram .. 24
Figure 6 Idempotent Flow sequence diagram .. 26

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 5 of 40

Document History
Revision Date Author Revision Comments

0.1 2013-03-25 Jim N

0.2 2013-04-13 Jim N (editor), Anders
Furuhed (submitter),
David Rosenberg
(submitter)

Significant refactoring based upon prototyping
and development work performed by Pantor
Engineering to achieve a single session layer
protocol that can address reliable, unreliable
message flow, for both transactional and
information distribution (market data)
applications.

Renamed FIXNS to FIXP to recognize this next
level of refactoring and design.

The original concept of message type
identification has been optimized.

Sequence numbers are now fully implicit, with
explicit framing using a Sequence message.

0.3 2013-05-20 Jim N Corrected some typographical errors.

0.4 2013-08-12 Jim N Removed Challenge response,

Removed data type information instead
specified ranges.

Revised datatype section during review on
2013-08-12, included reference to RFC 4122.

0.5 2013-08-20 Jim N Added sequence diagrams

0.6 2013-12-03 Julio M Updated to comply with XMIT alpha 8.

0.7 2014-04-07 Julio M Updated to comply with XMIT alpha 13. Still
needs diagram updates.

0.8 2014-04-24 Julio M Updated to comply with XMIT alpha 14. Still
needs diagram updates.

0.9 2014-05-28 Jim N, Aditya Kapur, Julio
M.

RC1 Candidate, renamed “Sequenced” flow
type to “Recoverable”, diagram updates,
inclusion of use case scenarios.

0.10 2014-06-11 Don Mendelson Section 2.1 (Introduction): explain encoding
independence for both session and application
layers

Chapter 3.1 naming convention.

Chapter 3.3: rename to section 3.5, explain
differences between initiator and acceptor
session (is there an asymmetry?)

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 6 of 40

Revision Date Author Revision Comments

Chapter 3.4.1: Note to Open Framing Header
in chapter 1.3

3.6.1 Explained flow types

3.8 Reasons for terminating a session

3.12 Applied only used for non-standard
application responses

0.11 2014-07-18 Don Mendelson Removed mention of reference
implementation. Updated references and
removed unpublished documents. Added
explanation of reject codes.

0.12 2014-08-13 Don Mendelson Recommendation of authentication protocol
deferred. Added statement that only
application messages are sequenced.
Explained when a Sequence must be sent.
Explained session lifetime. Added negotiation
reject code for duplicate ID. Stated than
RetransmitRequest should only be sent for
recoverable flows and NotApplied is only for
idempotent flows. Duplicate requests on an
idempotent flow are silently dropped.
Appendix added with rules of engagement
checklist.

0.13 2014-08-13 Don Mendelson Clarified distinction between termination and
finalization of flow. Added session state
machine diagram. Added recommendation
about timeout leniency (was a comment).
Added discussion of heartbeats and silence is
termination. Added recommendation about
Nagle.

0.14 2014-09-04 Don Mendelson Updated from XMIT version alpha15.

0.15 2014-09-08 Don Mendelson Corrected description of NextSeqNo on
establishment and added other explanations
discussed on the call today.

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 7 of 40

1 Introduction
FIX Performance Session Layer (FIXP) is a “lightweight point-to-point protocol” introduced to provide an
open industry standard for high performance computing requirements currently encountered by the FIX
Community. FIXP is a derived work. The origin and basis for FIXP are the FIX session layer protocols and
the designed and implemented by NASDAQOMX, SoupTCP, SoupBinTCP, and UFO (UDP for Orders).
Every attempt was made to keep FIXP as close to the functionality and behavior of SoupBinTCP and UFO
as possible. Extensions and refactoring were performed as incremental improvements. Every attempt
was made to limit the FIXP to establishing and maintaining a communication session between two end
points in a reliable manner, regardless of the reliability of the underlying transport.

FIXP features

 Binary protocol

 Very simple lightweight point-to-point session layer for reliable communication.

 Communication protocol independent

 Encoding independent

 Restricted to initiating, maintaining, and reestablishing a session.

The idea to provide an open standard high performance session layer with SoupBinTCP as its source
came from two simultaneous sources.

1. The BVMF (Brazil) began investigating SoupBinTCP as a lightweight and simple alternative for
market data delivery due to issues with Multicast IP infrastructure at member firms. The idea to
align packet types to existing FIX message types was created during a meeting prior to the start
of the High Performance Working Group.

2. Pantor Engineering prototyped a solution for high performance computing that used FAST
datatypes (without field operators) carried over a SoupBinTCP session. Anders Furuhed
presented the concept at the FIX Nordic event.

1.1 Authors

Name Affiliation Contact Role

Anders Furuhed Pantor Engineering anders@pantor.com Protocol Designer

David Rosenborg Pantor Engineering david.rosenborg@pantor.com Protocol Designer

Rolf Andersson Pantor Engineering rolf@pantor.com Contributor, GTC
Governance Board
member

Jim Northey LaSalle Technology jimn@lasalletech.com Editor, Working group
convener

Julio Monteiro BVMF Bovespa jmonteiro@bvmf.com.br Editor, Working Group
convener

Aditya Kapur CME Group, Inc Aditya.kapur@cmegroup.com Working Group
Participant – provided
document editing and
input on exchange
adoption

mailto:anders@pantor.com
mailto:rolf@pantor.com
mailto:jimn@lasalletech.com
mailto:jmonteiro@bvmf.com.br
mailto:Aditya.kapur@cmegroup.com

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 8 of 40

Don Mendelson CME Group, Inc. Don.Mendelson@cmegroup.com Working Group
Participant and regular
contributor

Li Zhu Shanghai Stock
Exchange

lzhu@sse.com.cn Working Group
Participant and regular
contributor

1.2 Relevant and Related Standards

 Sources 1.2.1

These standards were sources for concepts but are non-normative for FIXP.

Reference Version Relevance Normative

UFO (UDP for
Orders) NASDAQ
OMX

Version
1.0, July
3, 2008

Basis for high performance session layer. No

SoupBinTCP
NASDAQ OMX

3.00 Basis for high performance session layer. No

FIXT Session
Layer
Specification

1.1 The previous FIX session layer specification No

XMIT alpha15 High performance session protocol design by Pantor
Engineering

No

 Related FIX Standards 1.2.2

The FIX Simple Open Framing Header standard governs how messages are delimited and has a specific
relationship mentioned in this specification. FIXP interoperates with the other FIX standards at
application and presentation layers, but it is not dependent on them. Therefore, they are considered
non-normative for FIXP.

Related Standard Version Reference location Relationship Normative

Simple Open
Framing Header

RC1 Optional usage at
presentation layer

Yes

FIX message
specifications

5.0 SP 2 Presentation and
application layers

No

FIX Simple Binary
Encoding

RC2 Optional usage at
presentation layer

No

Encoding FIX
Using ASN.1

Draft
Standard

 Optional usage at
presentation layer

No

Encoding FIX
Using GPB

RC2 Optional usage at
presentation layer

No

mailto:Don.Mendelson@cmegroup.com
mailto:lzhu@sse.com.cn

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 9 of 40

 Dependencies on Other Specifications 1.2.3

FIXP is dependent on several industry standards. Implementations of FIXP must conform to these
standards to interoperate. Therefore, they are normative for FIXP. Other protocols may be used by
agreement between counterparties.

Related Standard Version Reference location Relationship Normative

RFC 793
Transmission
Control Program
(TCP)

N/A http://tools.ietf.org/html/rfc793
and related standards

Uses transport Yes

RFC 768 User
Datagram
Protocol (UDP)

N/A http://tools.ietf.org/html/rfc768 Uses transport Yes

RFC4122 A
Universally
Unique Identifier
(UUID) URN
Namespace

N/A http://tools.ietf.org/html/rfc4122 Uses Yes

UTF-8, a
transformation
format of ISO
10646

N/A http://tools.ietf.org/html/rfc3629 Uses encoding Yes

Various
authentication
protocols

N/A Optional usage at
session layer

No

1.3 Intellectual Property Disclosure

Related Intellection Property Type of IP
(copyright,

patent)

IP Owner Relationship to
proposed standard

Blink
http://blinkprotocol.org/spec/BlinkSpec-
beta3.pdf

Copyright Pantor
Engineering

XMIT Copyright Pantor
Engineering

Basis for design of
protocol

Soup, SoupBinTCP, UFO (UDP for Orders),
and MoldUDP

Copyright NASDAQOMX FIXP is intended to
provide functionality
equivalent to these
protocols.

http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc768
http://tools.ietf.org/html/rfc4122
http://tools.ietf.org/html/rfc3629

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 10 of 40

1.4 Definitions

Term Definition

Client Initiator of session.

Server Acceptor of session

TCP Transmission Control Protocol

UDP User Datagram Protocol

IPC Inter-Process Communication

IP MC IP Multicast

IDEMP Idempotence means that an operation that is applied multiple times
does not change the
outcome, the result, after the first time

2 Requirements

2.1 Business Requirements

Create an enhanced session protocol that can provide reliable, highly efficient, exchange of messages to
support high performance financial messaging, over a variety of transports.

Protocol shall be fit for purpose for current high message rates, low latency environments in financial
markets, but should be to every extent possible applicable to other business domains. There is no
reason to limit or couple the session layer to the financial markets / trading business domain without
extraordinary reason.

Support common message flow types: Recoverable, Unsequenced and Idempotent (operations
guaranteed to be applied only once).

Protocol shall support asymmetric models, such as market participant to market, in addition to peer-to-
peer (symmetric). Allow the communication of messages to multiple receivers (broadcast).

The session protocol does not require or recommend a specific authentication protocol. Counterparties
are free to agree on user authentication techniques that fit their needs.

2.2 Technical Requirements

 Protocol Layering 2.2.1

This standard endeavors to maintain a clear separation of protocol layers, as expressed by the Open
Systems Interconnection model (OSI). The responsibilities of a session layer are establishment,
termination and restart procedures and rules for the exchange of application messages.

The protocol shall be independent of message encoding (presentation layer), to provide the maximum
utility. Encoding independence applies both to session layer messages specified in this document as well
as to application messages. It is simpler if session protocol messages are encoded the same way as
application messages, but that is not a requirement of this session protocol.

Users are free to specify message encodings by agreement with counterparties. FIX provides Simple
Binary Encoding as well as mappings of FIX to other high performance encodings such as ASN.1, and

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 11 of 40

Google Protocol Buffers. See the list of related standards above. Other recognized encodings may follow
in the future.

Of necessity, the session protocol makes some adaptations for transport layer protocols used by the
session layer since the capabilities of common transports are quite different. In particular, TCP is
connection- and stream-oriented and implements its own reliable delivery mechanisms. Meanwhile,
UDP is datagram-oriented and does not guarantee delivery in order. Unfortunately, these characteristics
bleed across protocol layers.

 Low overhead 2.2.2

Minimum overhead is added to the messages exchanged between peers, using only the strictly
necessary control messages.

By agreement between counterparties, a message framing protocol may be used to delimit messages.
This relieves the session layer of application message decoding to determine message boundaries. FIX
offers the Simple Open Framing Header standard for framing messages encoded with binary wire
formats. See standards references above.

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 12 of 40

3 FIX Performance Session Layer

3.1 Usage and naming conventions
All symbolic names for messages and fields in this protocol should follow the same naming convention
as other FIX specifications: alphanumeric characters plus underscores without spaces.

3.2 Datatypes
Datatypes are abstract. Actual encoding of FIXP is left to the implementation.

Logical Type Range Native Type Comments

u8 0..2^8-1

u16 0..2^16-1

u32 0..2^32-1

u64 0..2^64-1

UUID RFC 4122 compliant UUID The requirement is to provide a
mechanism that can be self-
generated and guaranteed free of
collision.
Implementers are encouraged to
adopt version 4.

String text UTF-8, length may need to be
specified as part of the encoding.

Bool true / false u8

nanotime Time in nanoseconds u64

DeltaMillisecs Number of milliseconds u32

Object Unspecified data content
Requires some way to determine
length

3.3 FIXP Session Messages

Each message starts with a message type as the first field.

 Message Type Identification 3.3.1

The session layer messages have high type id values as these messages are relatively uncommon. The
potentially more compact lower values are therefore left for other use by applications.
There is one exception: the Sequence message, which is common and therefore is assigned a low type id
value. This session layer reserves the type id 0x01 for Sequence and the range #0x10000 to 0x10210 for
other messages.
All other values between 0x02 and 0x0FFFF are available for use in identifying application messages. A
FIXP Processor shall make the application messages available to the application layer without decoding
or processing.

Purpose Start Hexadecimal End Hexadecimal

Sequence Message 0x01

Application Messages 0x02- 0x0FFFF

FIXP Session Messages 0x10000 0x10210

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 13 of 40

3.4 Message Sequencing

 Sequence numbering 3.4.1

Sequence numbering supports ordered delivery and recovery of messages. In FIXP, only application
messages are sequenced, not session protocol messages. A Sequence message is used to start a
sequenced flow of application messages. Any applications message passed after a Sequence message is
implicitly numbered, where the first message after Sequence has the sequence number NextSeqNo.

Sequence
Field name Type Required Value Description

MessageType u32 Y 0x01

NextSeqNo u64 Y
The sequence number of the next message after
the Sequence message.

 Message framing 3.4.2

FIXP does not require application messages to have a session layer header. Application messages may
have their own presentation layer header, depending on encoding. However, application messages may
immediately follow Sequence without any intervening session layer prologue.

Optionally, application messages may be delimited by use of the Simple Open Framing Header. This is
most useful if session message encoding is different than application message encoding or if a session
carries application messages in multiple encodings. The framing header identifies the encoding of the
message that follows and gives its overall length. If it is used, then FIXP need not parse application
messages to determine length and keep track of message counts in a flow.

 Application message sequencing considerations 3.4.3

An application layer defined on top is obviously free to put any required application level sequencing
inside messages.

 Datagram oriented protocol considerations 3.4.4

Using a datagram oriented transport like UDP, each datagram carrying a sequenced flow, the Sequence
message is key to detecting packet loss and packet reordering and must precede any application
messages in the packet.

FIXP provides no mechanism for fragmenting messages across datagrams. In other words, each
application message must fit within a single datagram on UDP.

 Multiplexed session considerations 3.4.5

If sessions are multiplexed over a transport, they are framed independently. When multiplexing, the
Context message expands Sequence to also specify the session being sequenced.
If flows are multiplexed over a transport, the transport does not imply the session. Context is used to set
the session for the remainder of the current datagram (in a datagram oriented transport) or until a new
Context is passed. In a sequenced flow, Context can take the role of Sequence by including NextSeqNo
(optimizes away the Sequence that would otherwise follow).

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 14 of 40

Context
Field name Type Required Value Description

MessageType u32 Y 0x10050

SessionId UUID Y Session Identifier

NextSeqNo u64 N
The sequence number of the next message
after the Context message.

 Sequence context switches 3.4.6

A change in session context ends the sequence of messages implicitly and the sender must pass a
Sequence or Context message again before starting to send sequenced messages. A Sequence message
must be sent if the session is not multiplexed and Context must be sent if it is multiplexed.
Changes of session context include:

 Interleaving of new, real-time messages and retransmitted messages.

 Switching from one multiplexed session to another when sharing a transport.

3.5 Session Properties

 Session identification 3.5.1

Each session is identified by a unique Session ID encoded as a UUID version 4 (RFC 4122) assigned by the
client. The benefit of using an UUID is that it is effortless to allocate in a distributed system. It is also
simple and efficient to hash and therefore easy to look up at the endpoints. The downside is a larger size
overhead. The identifier however does not appear in the stream except once at the start of each
datagram, when using UDP, or when sessions are multiplexed, regardless of the underlying transport
that is used. For a non-multiplexed TCP session, the identifier therefore appears only once during the
lifetime of the TCP session. A UUID is intended to be unique, not only amongst currently active sessions,
but for all time. Reusing a session ID is a protocol violation.

 Session lifetime 3.5.2

A logical session is established between counterparties and lasts until information flows between them
are complete. Commonly, such flows are concurrent with daily trading sessions, but no set time limit is
imposed by this protocol. Rather, timings for session start and end are set by agreement between
counterparties.

A logical session is identified by a session ID, as described above, until its information flows are finalized.
After finalization, the old session ID is no longer valid, and messages are no longer recoverable.
Counterparties may subsequently start a new session under a different ID.

A logical session is bound to a transport, but a session may outlive a transport connection. The binding
to a transport may be terminated intentionally or may be triggered by an error condition. However, a
client may reconnect and bind the existing session to the new transport. When re-establishing an
existing session, the original session ID continues to be used, and recoverable messages that were lost
by disconnection may be recovered .

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 15 of 40

 Summary of messages that control lifetime 3.5.3

Logical sessions are created by using the Negotiation message. The session ID is sent in the Negotiation
message and that ID is used for the lifetime of the session.

After negotiation is complete, the client sends an Establish message to reach the established state. Once
established, exchange of application messages may proceed. The established state is concurrent with
the lifetime of a connection-oriented transport such as TCP. A client can re-establish a previous session
after reconnecting without any further negotiation. Thus, Establish binds the session to the new
transport instance.

To signal a counterparty that a disconnection is about to occur, a Terminate message is sent. This
unbinds the transport from the session, but it does not end a logical session.

A session that has a recoverable flow may be re-established by sending Establish with the same session
ID, and an exchange of messages may continue until all business transactions are finished.

A logical session is ended by sending a FinishedSending message. Thereafter, no more application
messages should be sent. The counterparty responds with FinishedReceiving when it has processed the
last message, and then the transport is terminated for the final time for that session. Once a flow is
finalized and the transport is unbound, a session ID is no longer valid and messages previously sent on
that session are no longer recoverable.

3.6 Session Initiation and Negotiation
A negotiation dialog is provided to support a session negotiation protocol that is used for a client to
declare what id it will be using, without having to go out of band. There is no concept of resetting a
session. Instead of starting over a session, a new session is negotiated - a SessionId in UUID form is
cheap.
The optional session negotiation is expected to occur at session initiation.

 Flow Type 3.6.1

The negotiation protocol identifies the types of message flow that can occur, Recoverable, Unsequenced
or Idempotent.

FlowType = Recoverable | Unsequenced | Idempotent

From highest to lowest delivery guarantee, the flow types are:

 Recoverable: Guarantees exactly-once message delivery. If gaps are detected, then missed
messages are recovered by retransmission.

 Idempotent: Guarantees at-most-once delivery. If gaps are detected, the sender is notified, but
recovery is under control of the application, if it is done at all.

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 16 of 40

 Unsequenced: Makes no delivery guarantees (best-effort). This choice is appropriate if
guarantees are unnecessary or if recovery is provided at the application layer or through a
different communication channel.

By agreement between counterparties, only certain of these flow types may be supported for a
particular service.

 Initiate Session Negotiation 3.6.2

Negotiate message is sent from client to server.

Negotiate
Field name Type Required Value Description

MessageType u32 Y 0x10000

Timestamp nanotime Y Time of request

SessionId UUID Y Session Identifier

ClientFlow FlowType Y Type of flow over the session

Credentials Object N

Optional credentials to authenticate session
initiator. Format and protocol for
authentication to be determined by
agreement between counterparties.

 Accept Session Negotiation 3.6.3

When a session is accepted by a server, it sends a NegotiationResponse in response to a Negotiate
message.

NegotiationResponse
Field name Type Required Value Description

MessageType u32 Y 0x10001

RequestTimestamp nanotime Y Matches Negotiate.Timestamp

SessionId UUID Y Session Identifier

ServerFlow FlowType Y Type of flow over the session

 Reject Session Negotiation 3.6.4

When a session cannot be created, a server sends NegotiationReject to the client, giving the reason for
the rejection. No further messages should be sent, and the transport should be terminated.

NegotiationRejectCode = Credentials | Unspecified | FlowTypeNotSupported | DuplicateId

Rejection reasons

 Credentials: failed authentication because identity is not recognized, keys are invalid, or the user
is not authorized to use a particular service.

 FlowTypeNotSupported: server does not support requested client flow type.

 DuplicateId: session ID is non-unique.

 Unspecified: Any other reason that the server cannot create a session.

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 17 of 40

If negotiation is re-attempted after rejection, a new session ID should be generated.

NegotiationReject
Field name Type Required Value Description

MessageType u32 Y 0x10002

RequestTimestamp nanotime Y Matches Negotiate.Timestamp

SessionId UUID Y Session Identifier

Code NegotiationRejectCode Y

Reason string N Reject reason details

 Session Negotiation Sequence Diagram 3.6.5

Figure 1 Session Negotiation Sequence Diagram

3.7 Session Establishment
Establish attempts to bind the specified logical session to the transport that the message is passed over.
The response to Establish is either EstablishmentAck or EstablishmentReject.

 Establish 3.7.1

The client sends Establish message to the server and awaits acknowledgement.

There is no specific timeout value for the wait defined in this protocol. Experience should be a guide to
determine an abnormal wait after which a server is considered unresponsive. Then establishment may
be retried or out-of-band inquiry may be made to determine application readiness.

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 18 of 40

Establish
Field name Type Required Value Description

MessageType u32 Y 0x10010

Timestamp nanotime Y Time of request

SessionId UUID Y Session Identifier

KeepaliveInterval DeltaMillisecs Y
The longest time in milliseconds the initiator
will remain silent before sending a keep
alive message

NextSeqNo u64 N
For re-establishment of a recoverable server
flow only, the next application sequence
number to be produced by the client.

Credentials object N Credentials for session authorization

Counterparties may agree on a valid range for KeepaliveInterval.
The server should evaluate NextSeqNo to determine whether it missed any messages after re-
establishment of a recoverable flow. If so, it may immediately send a RetransmitRequest after sending
EstablishAck.

 Establish Acknowledgment 3.7.2

Used to indicate the acceptor acknowledges the session. If the communication flow from this endpoint
is recoverable, it will fill the NextSeqNo field, allowing the initiator to start requesting the replay of
messages that it has not received.

EstablishmentAck
Field name Type Required Value Description

MessageType u32 Y 0x10011

SessionId UUID Y
SessionId is included only for robustness, as
matching RequestTimestamp is enough

RequestTimestamp nanotime Y Matches Establish.Timestamp

KeepaliveInterval DeltaMillisecs Y
The longest time in milliseconds the
acceptor will wait before sending a keep
alive message

NextSeqNo u64 N
For a recoverable server flow only, the next
application sequence number to be
produced by the server.

The client should evaluate NextSeqNo to determine whether it missed any messages after re-
establishment of a recoverable flow. If so, it may immediately send a RetransmitRequest .

 Establish Reject 3.7.3

EstablishmentRejectCode = Unnegotiated | AlreadyEstablished | SessionBlocked | KeepaliveInterval |
Credentials | Unspecified

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 19 of 40

Rejection reasons:

 Unnegotiated: Establish request was not preceded by a Negotiation or session was finalized,
requiring renegotiation.

 AlreadyEstablished: EstablishmentAck was already sent; Establish was redundant.

 SessionBlocked: user is not authorized

 KeepaliveInterval: value is out of accepted range.

 Credentials: failed authentication because identity is not recognized, keys are invalid, or the user
is not authorized to use a particular service.

 Unspecified: Any other reason that the server cannot establish a session.

EstablishmentReject
Field name Type Required Value Description

MessageType u32 Y 0x10012

SessionId UUID Y
SessionId is redundant and
included only for robustness

RequestTimestamp nanotime Y Matches Establish.Timestamp

Code EstablishmentRejectCode Y

Reason string N Reject reason details

 Session Establishment Sequence Diagram 3.7.4

Figure 2 Session Establishment Sequence Diagram

3.8 Transport termination
Terminate is a signal to the counterparty that this side is dropping the binding between the logical
session and the underlying transport. A session may terminate its transport if there are no more
messages to send but it intends to restart at a later time. Additionally, a transport should be terminated

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 20 of 40

if an unrecoverable error occurs in message parsing or framing, or if the counterparty violates this
protocol.

An established session becomes terminated (stops being established) for the following reasons:

 One of the peers sends of receives a Terminate message;

 The transport level session is disconnected;

 The keep-alive interval expired and no keep-alive message received. It is recommended to allow
some leniency in timeout to allow for slight mismatches of timers between parties.

TerminationCode = Finished | UnspecifiedError | ReRequestOutOfBounds | ReRequestInProgress

Terminate
Field name Type Required Value Description

MessageType u32 Y 0x10015

SessionId UUID Y
SessionId is redundant and included only
for robustness

Code TerminationCode Y

Reason string N

 Terminate Session Sequence Diagram 3.8.1

Initiator Acceptor

Terminate
0x10015

Figure 3 Termination Session Sequence Diagram

3.9 Session heartbeat
Each party must send a heartbeat message during each interval in which no application messages were
sent. A client’s heartbeat timing is governed by the KeepaliveInterval value it sent in the Establish
message, and a server is governed by the value it sent in EstablishAck.
Each party should check whether it has received any message from its counterparty in the expected
interval. Silence is taken as evidence that the transport is no longer valid, and the session is terminated
in that event.
For recoverable or idempotent flows, the gap detection can be achieved by sending Sequence messages
respecting the keepalive interval.

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 21 of 40

For unsequenced flows, there is the UnsequencedHeartbeat message to detect that a logical session has
disappeared or that there is a problem with the transport, allowing the peer to terminate session state
timely and to potentially reestablish the session.

UnsequencedHeartbeat
Field name Type Required Value Description

MessageType u32 Y 0x10020

When a session is being finalized, but the FinishedReceiving message has not yet been received, then
FinishedSending message is used as the heartbeat.

On TCP, it is recommended that Nagle algorithm be disabled to prevent the transmission of heartbeats
and other messages from being delayed, potentially causing unnecessary session termination.

3.10 Resynchronization
When receiving a recoverable message flow, a peer may request sequenced messages to be
retransmitted by sending a RetransmitRequest message, which is answered by one or more
Retransmission messages (or with a Terminate message if the request is invalid).
Sending a RetransmitRequest to the sender of an idempotent or unsequenced flow is a protocol
violation. In that case, the session should be terminated.

RestransmitRequest
Field name Type Required Value Description

MessageType u32 Y 0x10021

SessionId UUID Y

Timestamp nanotime Y

FromSeqNo u64 Y

Count u32 Y

Retransmission implies that the subsequent messages are sequenced without requiring that a Sequence
message is passed. In a datagram oriented transport, Retransmission is passed in every single
retransmission datagram.

Restransmission
Field name Type Required Value Description

MessageType u32 Y 0x10022

SessionId UUID Y
Defeats the need for Context when
multiplexing

NextSeqNo u64 Y

RequestTimestamp nanotime Y

Count u32 Y

In a datagram transport without builtin flow control, like UDP, resending many messages in a short time
may result in packet loss. RetransmitRequest and Retransmission messages must therefore be

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 22 of 40

exchanged in a way that the correspondence is rate paced. Unless the underlying transport provides
guaranteed delivery, the sender must limit how many messages are retransmitted per request to what
can be sent in a single datagram.
In addition to resetting the implicit sequence number, the Retransmission message signals that the
request has been or is being processed and also informs the consumer whether it needs to issue a follow
up RetransmitRequest message.
The sender will terminate the session with the ReRequestInProgress code if it sees a premature
retransmit request. If the RetransmitRequest is used to request messages that are not available a
Terminate is issued with the ReRequestOutOfBounds code.

 Retransmission Sequence Diagram 3.10.1

Figure 4 Retransmission Sequence Diagram

3.11 Finalizing a Session
Finalization is a handshake that ends a logical session when there are no more messages to exchange.

 Finish Sending 3.11.1

A FinishedSending message is sent to begin finalizing a logical session when the last application message
in a flow has been sent.

The sender of this message awaits a FinishedReceiving response. It the wait takes longer than
KeepaliveInterval for the flow, it should send FinishedSending messages as heartbeats until finalization
is complete.

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 23 of 40

FinishedSending
Field name Type Required Value Description

MessageType u32 Y 0x10025

SessionId UUID Y
SessionId is redundant and included only for
robustness

LastSeqNo u64 N
Populated for an idempotent or recoverable
flow

The counterparty should evaluate LastSeqNo to determine whether it has processed the flow to the end.
If received on a recoverable flow, the counterparty may send a RetransmitRequest to recover any
missed messages before acknowledging finalization of the flow. On an idempotent flow, it should send
NotApplied to notify the sender of the gap.

 Finish Receiving 3.11.2

Upon processing the last application message indicated by the FinishedSending message (possibly
received on a retransmission), a FinishedReceving message is sent in response.

When a FinishedReceiving has been received by the party that initiated the finalization handshake, a
Terminate message is sent to unbind the transport. At that point, the session is considered finalized, and
its session ID is no longer valid.

FinishedReceiving
Field name Type Required Value Description

MessageType u32 Y 0x10026

SessionId UUID Y
SessionId is redundant and included only for
robustness

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 24 of 40

 Terminating a Recoverable Session Sequence Diagram 3.11.3

Figure 5 Recoverable Session Termination Sequence Diagram

3.12 Idempotent Flow
When using the idempotent flow, the protocol ensures that each application message is an idempotent
operation that will be guaranteed applied only once.

To guarantee idempotence, a unique sequential identifier has to be allocated to each operation to be
carried out. The response flow must identify which operations that have been carried out, and is
sequenced. The lack of acknowledgment of an operation triggers the operation to be reattempted (at
least once semantics). The lack of acknowledgment can be triggered by the acknowledgment of a later
operation or by the expiration of a timer. The side carrying out an operation must filter out operations
with a duplicate identifier (at most once semantics). If a transaction has already been applied, a
duplicate request should be silently dropped. The combination of at-most-once and at-least-once
semantics provide exactly-once semantics, making any operation tagged with a unique id to be
idempotent.

The sequence number is implicit and is defined using a Sequence message. The first message after
Sequence has the sequence number NextSeqNo. The same lifetime rules apply for the implicit sequence
number in the idempotent flow, as for the implicit sequence number in the recoverable flow.
Unless the recoverable server return flow identifies the result of operations at the application level,
implementers may opt to use the following Applied or NotApplied messages to return the status of the
operation.

 Applied 3.12.1

This is an optional application response for non-standard messages. Standard FIX semantics provide
application layer acknowledgements to requests, e.g. Execution Report in response to New Order Single.
The principle is to use application specific acknowledgement messages where possible; use the Applied
message where an application level acknowledgement message does not exist.

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 25 of 40

Since Applied is an application message, it will be reliably delivered if returned on a recoverable flow.

Applied
Field name Type Required Value Description

MessageType u32 Y 0x10201

FromSeqNo u64 Y The first applied sequence number

Count u32 Y How many messages have been applied

 NotApplied 3.12.2

NotApplied response is given if a receiver recognizes a gap in sequence numbers on an idempotent flow.
The sender of the missed requests then has a responsibility to make a decision about recovery at an
application layer. It may decide to resend the transactions with new sequence numbers, to send
different transactions, or to do nothing.

Like Applied, the NotApplied message is handled as an application message. That is, it consumes a
sequence number.

Sending NotApplied for a recoverable or unsequenced flow is a protocol violation. On a recoverable
flow, RetransmitRequest should be used instead.

NotApplied
Field name Type Required Value Description

MessageType u32 Y 0x10202

FromSeqNo u64 Y The first not applied sequence number

Count u32 Y How many messages haven´t been applied

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 26 of 40

 Idempotent Flow Sequence Diagram 3.12.3

Figure 6 Idempotent Flow sequence diagram

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 27 of 40

4 Session Messages
Message Name Message Type Purpose

Sequence 0x01 Initiate a new session

Negotiate 0x10000

NegotiationResponse 0x10001

NegotiationReject 0x10002

Establish 0x10010

EstablishmentAck 0x10011

EstablishmentReject 0x10012

Terminate 0x10015

UnsequencedHeartbeat 0x10020

RetransmitRequest 0x10021

Retransmission 0x10022

FinishedSending 0x10025

FinishedReceiving 0x10026

Context 0x10050 Identify a context of a session

Applied 0x10201 Returns the status of idempotent operations

NotApplied 0x10202 Returns the status of idempotent operations

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 28 of 40

5 Appendix A - Usage Examples

5.1 Session Creation/Negotiation

 Session negotiation (both Recoverable) 5.1.1

Message
Received

Message
Sent

Message
Type

Session ID
(UUID)

Timestamp Request
Timestamp

Client Flow Server Flow Credentials

Negotiate 0x10000 ABC T1 -- Recoverable -- 123

 Negotiation
Response

0x10001 ABC -- T1
-- Recoverable --

 Session negotiation (both Unsequenced) 5.1.2

Message
Received

Message
Sent

Message
Type

Session ID
(UUID)

Timestamp Request
Timestamp

Client Flow Server Flow Credentials

Negotiate 0x10000 ABC T1 -- Unsequenced -- 123

 Negotiation
Response

0x10001 ABC -- T1
-- Unsequenced --

 Session negotiation (Client Idempotent and Server Recoverable) 5.1.3

Message
Received

Message
Sent

Message
Type

Session ID
(UUID)

Timestamp Request
Timestamp

Client Flow Server Flow Credentials

Negotiate 0x10000 ABC T1 -- Idempotent -- 123

 Negotiation
Response

0x10001 ABC -- T1
-- Recoverable --

 Session negotiation (Client Recoverable and Server Unsequenced) 5.1.4

Message
Received

Message
Sent

Message
Type

Session ID
(UUID)

Timestamp Request
Timestamp

Client Flow Server Flow Credentials

Negotiate 0x10000 ABC T1 -- Recoverable -- 123

 Negotiation
Response

0x10001 ABC -- T1
-- Unsequenced --

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 29 of 40

 Session negotiation (Client Unsequenced and Server Recoverable) 5.1.5

Message
Received

Message
Sent

Message
Type

Session ID
(UUID)

Timestamp Request
Timestamp

Client Flow Server Flow Credentials

Negotiate 0x10000 ABC T1 -- Unsequenced -- 123

 Negotiation
Response

0x10001 ABC -- T1
-- Recoverable --

 Session negotiation (rejects) 5.1.6

 Bad credentials 5.1.6.1
For example – Valid Credentials are 123 but Negotiate message is sent with Credentials as 456 then it will be
rejected.
Message
Received

Message
Sent

Message
Type

Session ID
(UUID)

Timestamp Request
Timestamp

Client
Flow

 Code Reason Credentials

Negotiate 0x10000 ABC T1 -- Idempot
ent

 -- 456

 Negotiation
Reject

0x10002 ABC -- T1
-- Bad

Credentials
 Invalid
Password

 --

 Flow type not supported 5.1.6.2
For example – Recoverable flow from Client is not supported but Negotiate message is sent with Client Flow as
Recoverable then it will be rejected.
Message
Received

Message
Sent

Message
Type

Session ID
(UUID)

Timestamp Request
Timestamp

Client
Flow

 Code Reason Credentials

Negotiate 0x10000 ABC T1 -- Recover
able

 -- -- 123

 Negotiation
Reject

0x10002 ABC -- T1
--

FlowTypeNot
Supported

 Client
Recoverable
Flow
Prohibited

 --

 Invalid session ID 5.1.6.3
For example – Session ID does not follow UUID or GUID semantics as per RFC 4122 and Negotiate message is sent
with Session ID as all zeros then it will be rejected.
Message
Received

Message
Sent

Message
Type

Session ID
(UUID)

Timestamp Request
Timestamp

Client
Flow

 Code Reason Credentials

Negotiate 0x10000 000 0 -- Idempot
ent

 -- -- 123

 Negotiation
Reject

0x10002 000 -- 0
--

Unspecified Invalid
SessionID
Format

 --

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 30 of 40

 Invalid request timestamp 5.1.6.4
For example – Timestamp follows Unix Epoch semantics and is to be sent with nanosecond level precision but
Negotiate message is sent with Timestamp as Unix Epoch but expressed as number of seconds then it will be
rejected.
Message
Received

Message
Sent

Message
Type

Session ID
(UUID)

Timestamp Request
Timestamp

Client
Flow

 Code Reason Credentials

Negotiate 0x10000 ABC 86400 -- Idempot
ent

 -- -- 123

 Negotiation
Reject

0x10002 ABC -- 86400
--

Unspecified Invalid
Timestamp
Format

 --

 Mismatch of sessionID/RequestTimestamp 5.1.6.5
For example – the session identifier and the request timestamp in the NegotiationResponse do not match with the
Negotiate message then the acknowledgment MUST be ignored and an internal alert may be generated.
Message
Received

Message
Sent

Message
Type

Session ID
(UUID)

Timestamp Request
Timestamp

Client Flow Server Flow Credentials

Negotiate 0x10000 ABC T1 -- Recoverabl
e

 -- 123

 Negotiation
Response

0x10001 DEF -- T2
-- Recoverable --

<Ignore NegotiationResponse message since it contains incorrect Session ID and/or RequestTimestamp and Generate Internal Alert and
Possibly Retry>

Negotiate 0x10000 ABC T3 -- Recoverable -- 123

5.2 Establishment and Reestablishment

 Establishment (Recoverable) 5.2.1

Message
Received

Message
Sent

Message
Type

Session ID
(UUID)

Timestamp Request
Timestamp

Client Flow Keep Alive
Interval

Next
SeqNo

Server Flow

Negotiate 0x10000 ABC T1 -- Recoverable -- -- --

 Negotiation
Response

0x10001 ABC -- T1
-- -- --

Recoverable

Establish 0x10010 ABC T2 -- -- 10 -- --

 Establishme
ntAck

0x10011 ABC -- T2
--

 10 1 --

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 31 of 40

 Establishment (Unsequenced) 5.2.2

Message
Received

Message
Sent

Message
Type

Session ID
(UUID)

Timestamp Request
Timestamp

Client Flow Keep Alive
Interval

Next
SeqNo

Server Flow

Negotiat
e

 0x10000 ABC T1 -- Unsequenced -- -- --

 Negotiation
Response

0x10001 ABC -- T1
-- -- -- Unsequenced

Establish 0x10010 ABC T2 -- -- 10 -- --

 Establish
mentAck

0x10011 ABC -- T2
--

 10 -- --

 Establishment (idempotent) 5.2.3

Message
Received

Message
Sent

Message
Type

Session ID
(UUID)

Timestamp Request
Timestamp

Client Flow Keep Alive
Interval

Next
SeqNo

Server Flow

Negotiate 0x10000 ABC T1 -- Idempotent -- -- --

 Negotiation
Response

0x10001 ABC -- T1
-- -- -- Recoverable

Establish 0x10010 ABC T2 -- -- 10 -- --

 Establish
mentAck

0x10011 ABC -- T2
--

 10 1 --

 Establishment rejects 5.2.4

 Unnegotiated 5.2.4.1
For example – Trying to send an Establish message without first Negotiating the session will result in the
Establishment message being rejected.
Message
Received

Message
Sent

Message
Type

Session ID
(UUID)

Timestamp Request
Timestamp

Code Reason Keep
Alive
Interval

Establish 0x10010 ABC T2 -- -- -- 10

 Establish
ment
Reject

0x10012 ABC -- T2

Unnegotiated

 Establishment
Not Allowed
Without
Negotiation

 --

 Already established 5.2.4.2
For example – Trying to send an Establish message when the session itself is already Negotiated and Established
will result in the Establishment message being rejected.

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 32 of 40

Message
Received

Message
Sent

Message
Type

Session ID
(UUID)

Timestamp Request
Timestamp

Code Reason Keep Alive
Interval

Negotiate 0x10000 ABC T1 -- -- -- --

 Negotiation
Response

0x10001 ABC -- T1
-- -- --

Establish 0x10010 ABC T2 -- -- -- 10

 Establish
mentAck

0x10011 ABC -- T2
--

 -- 10

Establish 0x10010 ABC T3 -- -- -- 10

 Establish
mentReject

0x10012 ABC -- T3 Already
Established

 Session is Already
Established

 --

 Session blocked 5.2.4.3
For example – if a particular Session ID has been blocked for bad behavior and is not allowed to establish a session
with the counterparty then also the Establishment message will be rejected.
Message
Received

Message
Sent

Message
Type

Session ID
(UUID)

Timestamp Request
Timestamp

Code Reason Keep Alive
Interval

Negotiate 0x10000 ABC T1 -- -- -- --

 NegotiationR
esponse

0x10001 ABC -- T1
-- -- --

Establish 0x10010 ABC T2 -- -- -- 10

 Establishmen
tReject

0x10011 ABC -- T2
Session
Blocked

 Session Has Been
Blocked, Please
Contact Market
Operations

 10

 Invalid keep alive interval 5.2.4.4
For example – if the bilateral rules of engagement permit a KeepAliveInterval no smaller than 10 milliseconds then
an Establishment message sent with a KeepAliveInterval of 1 millisecond will be rejected.
Message
Received

Message
Sent

Message
Type

Session ID
(UUID)

Timestamp Request
Timestamp

Code Reason Keep Alive
Interval

Negotiate 0x10000 ABC T1 -- -- -- --

 NegotiationR
esponse

0x10001 ABC -- T1
-- -- --

Establish 0x10010 ABC T2 -- -- -- 1

 Establishmen
tReject

0x10011 ABC -- T2 KeepAlive
Interval

 Invalid KeepAlive
Interval

 1

 Invalid session ID 5.2.4.5
For example – Session ID does not follow UUID or GUID semantics as per RFC 4122 and Establishment message is
sent with Session ID as all zeros then it will be rejected.

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 33 of 40

Message
Received

Message
Sent

Message
Type

Session ID
(UUID)

Timestamp Request
Timestamp

Code Reason Keep Alive
Interval

Negotiate 0x10000 ABC T1 -- -- -- --

 Negotiation
Response

0x10001 ABC -- T1
-- -- --

Establish 0x10010 000 T2 -- -- -- 10

 Establish
mentReject

0x10011 000 -- T2
Unspecified

 Invalid Session ID
Format

 10

 Invalid request timestamp 5.2.4.6
For example – Timestamp follows Unix Epoch semantics and is to be sent with nanosecond level precision but
Establishment message is sent with Timestamp as Unix Epoch but expressed as number of seconds then it will be
rejected.
Message
Received

Message
Sent

Message
Type

Session ID
(UUID)

Timestamp Request
Timestamp

Code Reason Keep Alive
Interval

Negotiate 0x10000 ABC T1 -- -- -- --

 Negotiation
Response

0x10001 ABC -- T1
-- -- --

Establish 0x10010 ABC 86400 -- -- -- 10

 Establish
mentReject

0x10011 ABC -- 86400
Unspecified

 Invalid Timestamp
Format

 10

 Bad credentials 5.2.4.7
For example – Valid Credentials are 123 but Establishment message is sent with Credentials as 456 then it will be
rejected.
Message
Received

Message
Sent

Message
Type

Session ID
(UUID)

Timestamp Request
Timestamp

Code Reason Credentials

Negotiate 0x10000 ABC T1 -- -- -- 123

 NegotiationR
esponse

0x10001 ABC -- T1
-- -- --

Establish 0x10010 ABC T2 -- -- -- 456

 Establishmen
tReject

0x10011 ABC -- T2 Bad
Credentials

 Invalid Password --

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 34 of 40

 Mismatch of sessionID/RequestTimestamp 5.2.4.8
For example – the session identifier and the request timestamp in the EstablishmentAck do not match with the
Establishment message then the acknowledgment MUST be ignored and an internal alert may be generated.
Message
Received

Message
Sent

Messag
e Type

Session ID
(UUID)

Timestamp Request
Timestamp

Client Flow Keep Alive
Interval

Next
SeqNo

Server Flow

Negotiat
e

 0x10000 ABC T1 -- Sequenced -- -- --

 Negotiation
Response

0x10001 ABC -- T1
-- -- -- Recoverable

Establish 0x10010 ABC T2 -- -- 10 -- --

 Establish
mentAck

0x10011 DEF -- T3
--

 10 1 --

<Ignore EstablishmentAck message since it contains incorrect Session ID and/or RequestTimestamp and Generate Internal Alert and
Possibly Retry>

Establish 0x10010 ABC T4 -- -- 10 -- --

5.3 Termination

 Time out 5.3.1

When the KeepAliveInterval has expired and no keep alive message is received then the session is terminated and
will need to be re-established. The transport level connection is still open (TCP socket) therefore Negotiation is not
required.
Message
Received

Message
Sent

Message Type Session
ID (UUID)

Timestamp Request
Timestamp

Client
Flow

 Keep Alive
Interval

 Code Reason

Negotiate 0x10000 ABC T1 -- Recoverab
le

 -- -- --

 Negotiation
Response

0x10001 ABC -- T1
-- -- -- --

Establish 0x10010 ABC T2 -- -- 10 -- --

 Establish
mentAck

0x10011 ABC -- T2
--

 10 -- --

<Time Interval Greater Than Keep Alive Interval Has Lapsed Without Any Message Being Received>

 Terminate 0x10015 ABC -- --
--

-- Timed
Out

 Keep Alive
Interval Has
Lapsed

Establish 0x10010 ABC T3 -- -- 10 -- --

 Establish
mentAck

0x10011 ABC -- T3
--

 10 -- --

 Deliberate termination 5.3.2

When the session has been deliberately terminated for example due to invalid RetransmitRequest then it will need
to be re-established. The transport level connection is still open (TCP socket) therefore Negotiation is not required.

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 35 of 40

Message
Received

Message
Sent

Message
Type

Session ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

From
SeqNo

 Count Code Reason

Negotiate 0x10000 ABC T1 -- -- -- -- -- --

 Negotiation
Response

0x10001 ABC -- T1 --
-- -- -- --

Establish 0x10010 ABC T2 -- -- -- -- -- --

 Establish
mentAck

0x10011 ABC -- T2 1000
--

 -- -- --

Retransmit
Request

 0x10010 ABC T3 -- --
1

 1000 -- --

 Terminate 0x10015 ABC -- -- --

--

 --
ReRequest
OutOf
Bounds

 Resent
Request
Exceeds
Maximum

Establish 0x10010 ABC T4 -- --
--

 -- -- --

 Establish
mentAck

0x10011 ABC -- T4 1000
--

 -- -- --

 Disconnection 5.3.3

When the transport level session itself (TCP socket) has been disconnected then the session needs to be
Negotiated and Established.
Message
Received

Message
Sent

Message
Type

Session
ID (UUID)

Timestamp Request
Timestamp

Client Flow Keep Alive
Interval

 Code Reason

Negotiate 0x10000 ABC T1 -- Recoverable -- -- --

 Negotiation
Response

0x10001 ABC -- T1
-- -- -- --

Establish 0x10010 ABC T2 -- -- 10 -- --

 Establish
mentAck

0x10011 ABC -- T2
--

 10 -- --

<TCP socket connection is disconnected>

Negotiate 0x10000 ABC T3 -- Recoverable -- -- --

 Negotiation
Response

0x10001 ABC -- T3
-- -- -- --

Establish 0x10010 ABC T4 -- -- 10 -- --

 Establish
mentAck

0x10011 ABC -- T4
--

 10 -- --

5.4 Sequence

 Recoverable flow 5.4.1

Over TCP – a Client would send a Sequence message at the very beginning of the session upon establishment. The
counterparty would not use it initially as it is provided in the EstablishmentAck message.

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 36 of 40

Message
Received

Message Sent Message
Type

Session ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

 Implicit
SeqNo

Negotiate 0x10000 ABC T1 -- -- --

 Negotiation Response 0x10001 ABC -- T1 -- --

Establish 0x10010 ABC T2 -- -- --

 EstablishmentAck 0x10011 ABC -- T2 1000 --

Sequence 0x01 -- -- -- 100 --

NewOrder
Single

 0x02 ABC T3 --
-- 100

 ExecutionReport 0x03 ABC T4 -- -- 1000

 Higher sequence number 5.4.1.1
The Sequence, Context, EstablishmentAck and Retransmission messages are sequence forming. They turn the
message flow into a sequenced mode since they have the next implicit sequence number. Any other Session
message makes the flow leave the sequenced mode. If the message is sequence forming then the flow does not
leave the sequenced mode, but the message potentially resets the sequence numbering.
For example – here the second Sequence message is increasing the NextSeqNo even though it was sent as a keep
alive message within a sequenced flow.

Message
Received

Message Sent Message
Type

Session ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

 Implicit
SeqNo

 From
SeqNo

 Count

Negotiate 0x10000 ABC T1 -- -- -- -- --

 Negotiation
Response

0x10001 ABC -- T1
-- -- -- --

Establish 0x10010 ABC T2 -- -- -- -- --

 Establishment
Ack

0x10011 ABC -- T2
1000 -- -- --

Sequence 0x01 -- -- -- 100 -- -- --

NewOrder
Single

 0x02 ABC T3 --
-- 100 -- --

 Execution
Report

0x03 ABC T4 --
-- 1000 -- --

Sequence 0x01 -- -- -- 200 -- -- --

NewOrder
Single

 0x02 ABC T5 --
-- 200 -- --

 NotApplied 0x10202 -- -- -- -- -- 101 100

 Execution
Report

0x03 ABC T6 --
-- 1001 -- --

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 37 of 40

 Lower sequence number 5.4.1.2
This is an example of a Sequence message being sent with a lower than expected NextSeqNo value even though it
was sent as a keep alive message within a sequenced flow.
Message
Received

Message Sent Message
Type

Session ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

 Implicit
SeqNo

 From
SeqNo

 Count

Negotiate 0x10000 ABC T1 -- -- -- -- --

 Negotiation
Response

0x10001 ABC -- T1
-- -- -- --

Establish 0x10010 ABC T2 -- -- -- -- --

 EstablishmentAck 0x10011 ABC -- T2 1000 -- -- --

Sequence 0x01 -- -- -- 100 -- -- --

NewOrder
Single

 0x02 ABC T3 --
-- 100 -- --

 ExecutionReport 0x03 ABC T4 -- -- 1000 -- --

Sequence 0x01 -- -- -- 50 -- -- --

 NotApplied 0x10202 -- -- -- -- -- 50 1

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 38 of 40

5.5 Multiplexing sessions

 Context 5.5.1

 Context flow 5.5.1.1
The Context message is needed to convey that a context switch is taking place from one Session ID (ABC) to
another (DEF) over the same transport. This way – two FIX sessions (ABC & DEF) could be multiplexed over one TCP
connection and there is a one to one relation between the two such that they need to be negotiated and
established independently. They will have independent sequence numbering and the EstablishmentAck response
will depend on where the particular session is sequence wise. There is no need to send a Context message before
an application message if the previous application message was destined for the same session. A Context message
has to be sent before an application message if the previous application message was destined for another session.
This is an example where a Context message is necessary since the previous message was for a different session.

Message
Received

Message Sent Message
Type

Session ID
(UUID)

Timestamp Request
Timestamp

Next Seq
No

 Implicit
SeqNo

Negotiate 0x10000 ABC T1 -- -- --

 NegotiationResponse 0x10001 ABC -- T1 -- --

Establish 0x10010 ABC T2 -- -- --

 EstablishmentAck 0x10011 ABC -- T2 1000 --

Negotiate 0x10000 DEF T3 -- -- --

 NegotiationResponse 0x10001 DEF -- T3 -- --

Establish 0x10010 DEF T4 -- -- --

 EstablishmentAck 0x10011 DEF -- T4 2000 --

Context 0x10050 ABC -- -- 100 --

NewOrder
Single

 0x02 ABC T5 --
-- 100

 Context 0x10050 ABC -- -- 1000 --

 ExecutionReport 0x03 ABC T6 -- -- 1000

Context 0x10050 DEF -- -- 200 --

NewOrder
Single

 0x02 DEF T7 --
-- 200

 Context 0x10050 DEF -- -- 2000 --

 ExecutionReport 0x03 DEF T8 -- -- 2000

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 39 of 40

 Context flow using sequence 5.5.1.2
This is an example where a Context message is not necessary since the previous message was for the same session
and a Sequence message will suffice.
Message
Received

Message Sent Message
Type

Session ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

 Implicit
SeqNo

Negotiate 0x10000 ABC T1 -- -- --

 NegotiationResponse 0x10001 ABC -- T1 -- --

Establish 0x10010 ABC T2 -- -- --

 EstablishmentAck 0x10011 ABC -- T2 1000 --

Sequence 0x01 -- -- -- 100 --

NewOrder
Single

 0x02 ABC T3 --
-- 100

 ExecutionReport 0x03 ABC T4 -- -- 1000

Negotiate 0x10000 DEF T5 -- -- --

 NegotiationResponse 0x10001 DEF -- T5 -- --

Establish 0x10010 DEF T6 -- -- --

 EstablishmentAck 0x10011 DEF -- T6 2000 --

Sequence 0x01 -- -- -- 200 --

NewOrder
Single

 0x02 DEF T7 --
-- 200

 ExecutionReport 0x03 DEF T8 -- -- 2000

FIX Performance Session Layer
FIX_TSP_FIXP_RC1 September 8, 2014 - v0.15

 Copyright, 2014, FIX Protocol, Limited Page 40 of 40

6 Appendix B – FIXP Rules of Engagement
This checklist is an aid to specifying a full protocol stack to be used for communication between
counterparties

Stack layer Client Server

Application Layer

Application level recovery
supported?

FIX version
Service pack
Extension packs

Presentation Layer

Message encoding
Version
Schema/templates

 Simple Binary Encoding
 GPB
 ASN.1
 FIX tag-value

Framing Simple Open Framing Header

 None

Session Layer
Supported flow types Recoverable

 Idempotent
 Unsequenced

 Recoverable
 Idempotent
 Unsequenced

Security protocols
Authentication

Transport Layer
Transports supported

 TCP
 UDP

Other network protocols

