

For Global Technical Committee Governance Internal Use Only
Submission Date September 10, 2015 Control Number

Submission Status Submitted Ratified Date

Primary Contact Person Don Mendelson Release Identifier

 Copyright, 2014-2015, FIX Protocol, Limited

;

 FIX Performance Session Layer

Release Candidate 2

Technical Specification

September 10, 2015

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 2 of 60

DISCLAIMER

THE INFORMATION CONTAINED HEREIN AND THE FINANCIAL INFORMATION EXCHANGE PROTOCOL
(COLLECTIVELY, THE "FIX PROTOCOL") ARE PROVIDED "AS IS" AND NO PERSON OR ENTITY ASSOCIATED
WITH THE FIX PROTOCOL MAKES ANY REPRESENTATION OR WARRANTY, EXPRESS OR IMPLIED, AS TO
THE FIX PROTOCOL (OR THE RESULTS TO BE OBTAINED BY THE USE THEREOF) OR ANY OTHER MATTER
AND EACH SUCH PERSON AND ENTITY SPECIFICALLY DISCLAIMS ANY WARRANTY OF ORIGINALITY,
ACCURACY, COMPLETENESS, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. SUCH
PERSONS AND ENTITIES DO NOT WARRANT THAT THE FIX PROTOCOL WILL CONFORM TO ANY
DESCRIPTION THEREOF OR BE FREE OF ERRORS. THE ENTIRE RISK OF ANY USE OF THE FIX PROTOCOL IS
ASSUMED BY THE USER.

NO PERSON OR ENTITY ASSOCIATED WITH THE FIX PROTOCOL SHALL HAVE ANY LIABILITY FOR
DAMAGES OF ANY KIND ARISING IN ANY MANNER OUT OF OR IN CONNECTION WITH ANY USER'S USE
OF (OR ANY INABILITY TO USE) THE FIX PROTOCOL, WHETHER DIRECT, INDIRECT, INCIDENTAL, SPECIAL
OR CONSEQUENTIAL (INCLUDING, WITHOUT LIMITATION, LOSS OF DATA, LOSS OF USE, CLAIMS OF
THIRD PARTIES OR LOST PROFITS OR REVENUES OR OTHER ECONOMIC LOSS), WHETHER IN TORT
(INCLUDING NEGLIGENCE AND STRICT LIABILITY), CONTRACT OR OTHERWISE, WHETHER OR NOT ANY
SUCH PERSON OR ENTITY HAS BEEN ADVISED OF, OR OTHERWISE MIGHT HAVE ANTICIPATED THE
POSSIBILITY OF, SUCH DAMAGES.

DRAFT OR NOT RATIFIED PROPOSALS (REFER TO PROPOSAL STATUS AND/OR SUBMISSION STATUS ON
COVER PAGE) ARE PROVIDED "AS IS" TO INTERESTED PARTIES FOR DISCUSSION ONLY. PARTIES THAT
CHOOSE TO IMPLEMENT THIS DRAFT PROPOSAL DO SO AT THEIR OWN RISK. IT IS A DRAFT DOCUMENT
AND MAY BE UPDATED, REPLACED, OR MADE OBSOLETE BY OTHER DOCUMENTS AT ANY TIME. THE FPL
GLOBAL TECHNICAL COMMITTEE WILL NOT ALLOW EARLY IMPLEMENTATION TO CONSTRAIN ITS ABILITY
TO MAKE CHANGES TO THIS SPECIFICATION PRIOR TO FINAL RELEASE. IT IS INAPPROPRIATE TO USE FPL
WORKING DRAFTS AS REFERENCE MATERIAL OR TO CITE THEM AS OTHER THAN “WORKS IN PROGRESS”.
THE FPL GLOBAL TECHNICAL COMMITTEE WILL ISSUE, UPON COMPLETION OF REVIEW AND
RATIFICATION, AN OFFICIAL STATUS ("APPROVED") OF/FOR THE PROPOSAL AND A RELEASE NUMBER.

No proprietary or ownership interest of any kind is granted with respect to the FIX Protocol (or any
rights therein).

Copyright 2014-2015 FIX Protocol Limited, all rights reserved.

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 3 of 60

Table of Contents

DISCLAIMER... 2
Table of Contents .. 3
Table of Figures ... 4
Document History ... 5
1 Introduction .. 6

1.1 Authors .. 6
1.2 Relevant and Related Standards ... 7
1.3 Intellectual Property Disclosure .. 8
1.4 Definitions ... 9

2 Requirements ... 9
2.1 Business Requirements ... 9
2.2 Technical Requirements .. 9

3 Common Features .. 11
3.1 Usage and Naming Conventions ... 11
3.2 Data Types ... 11
3.3 FIXP Session Messages .. 11
3.4 Message Sequencing ... 12
3.5 Session Properties ... 13

4 Point-to-Point Session Protocol .. 15
4.1 Summary of Messages that Control Lifetime .. 15
4.2 Session Initiation and Negotiation .. 15
4.3 Session Establishment ... 17
4.4 Transport Termination .. 20
4.5 Session Heartbeat.. 22
4.6 Resynchronization ... 23
4.7 Finalizing a Session .. 27
4.8 Idempotent Flow ... 29

5 Multicast Session Protocol .. 32
5.1 Multicast Session Lifecycle .. 32
5.2 Session Heartbeat.. 33

6 Summary of Session Messages ... 34
6.1 FIXP Session Messages .. 34
6.2 Related Application Messages .. 34
6.3 Summary of Protocol Violations .. 35

7 Appendix A - Usage Examples (TCP) ... 36
7.1 Initialization ... 36
7.2 Binding ... 39
7.3 Unbinding .. 43
7.4 Transferring ... 46
7.5 Finalizing .. 55

8 Appendix B – FIXP Rules of Engagement .. 60

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 4 of 60

Table of Figures
Figure 1 Session Negotiation Sequence Diagram ... 17
Figure 2 Session Establishment Sequence Diagram ... 20
Figure 3 Termination Sequence Diagram - TCP .. 22
Figure 4 Termination Sequence Diagram - UDP ... 22
Figure 5 Retransmission Diagram ... 25
Figure 5 RetransmitReject Diagram .. 26
Figure 6 Retransmit Violation Diagram ... 27
Figure 7 Recoverable Session Termination Sequence Diagram .. 29
Figure 8 Idempotent Flow sequence diagram .. 31

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 5 of 60

Document History
Revision Date Author Revision Comments

RC1 2014-10-31 RC1 baseline

RC2 2014-01-16 Don Mendelson

CME Group

Enumerate message types but leave template
or message identifiers to specific encodings.
Adapted Li Zhu’s table of session messages for
section 4.

 2014-01-29 Don Mendelson

CME Group

Clarified a receiver's behavior after it detected
a sequence number gap. Also added a section
on application layer recovery. Added None
flow type for a one-way session. It uses an
UnsequencedHeartbeat.

 2014-02-11 Don Mendelson

CME Group

Updated description of retransmission
responses, added RetransmitReject message.
Split spec into separate sections for point-to-
point and multicast protocols. Added Topic
message.

 2014-03-01 Don Mendelson

CME Group

Revised section on retransmission pacing.
Added heartbeat section to multicast flow.

 2014-03-05 Don Mendelson

CME Group

Added diagrams for retransmission responses.

 2014-03-17 Julio Moneiro BVMF Added section on out of band recovery.

 2014-03-24 Don Mendelson

CME Group

Stated that credentials are only for business
entity identification, not as user ID/password
for security.

 2015-06-01 Aditya Kapur CME Group Added TCP specific use cases for initialization,
binding, transferring, unbinding and finalizing.

 2014-07-07 Don Mendelson

CME Group

Updated Terminate Transport section and
sequence diagrams. Added summary of
protocol violations.

 2014-07-08 Don Mendelson

CME Group

Added definitions for flow and session.

 2014-07-13 Don Mendelson

CME Group

Updated diagrams for Terminate to make
distinction between TCP and UDP cases.

 2015-07-30 Aditya Kapur CME Group Removed out of band recovery and deferred it
to RC3.

Made updates to TCP usecases for finalization

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 6 of 60

1 Introduction
FIX Performance Session Layer (FIXP) is a “lightweight point-to-point protocol” introduced to provide an
open industry standard for high performance computing requirements currently encountered by the FIX
Community. FIXP is a derived work. The origin and basis for FIXP are the FIX session layer protocols and
the designed and implemented by NASDAQOMX, SoupTCP, SoupBinTCP, and UFO (UDP for Orders).
Every attempt was made to keep FIXP as close to the functionality and behavior of SoupBinTCP and UFO
as possible. Extensions and refactoring were performed as incremental improvements. Every attempt
was made to limit the FIXP to establishing and maintaining a communication session between two end
points in a reliable manner, regardless of the reliability of the underlying transport.

FIXP features

 Binary protocol

 Very simple lightweight point-to-point session layer for reliable communication.

 Communication protocol independent

 Encoding independent

 Restricted to initiating, maintaining, and reestablishing a session.

The idea to provide an open standard high performance session layer with SoupBinTCP as its source
came from two simultaneous sources.

1. The BVMF (Brazil) began investigating SoupBinTCP as a lightweight and simple alternative for
market data delivery due to issues with Multicast IP infrastructure at member firms. The idea to
align packet types to existing FIX message types was created during a meeting prior to the start
of the High Performance Working Group.

2. Pantor Engineering prototyped a solution for high performance computing that used FAST
datatypes (without field operators) carried over a SoupBinTCP session. Anders Furuhed
presented the concept at the FIX Nordic event.

1.1 Authors

Name Affiliation Contact Role

Anders Furuhed Pantor Engineering anders@pantor.com Protocol Designer

David Rosenborg Pantor Engineering david.rosenborg@pantor.com Protocol Designer

Rolf Andersson Pantor Engineering rolf@pantor.com Contributor, GTC
Governance Board
member

Jim Northey LaSalle Technology jimn@lasalletech.com Editor, Working group
convener

Julio Monteiro BVMF Bovespa jmonteiro@bvmf.com.br Editor, Working Group
convener

Aditya Kapur CME Group, Inc Aditya.kapur@cmegroup.com Working Group
Participant – provided
document editing and
input on exchange
adoption

mailto:anders@pantor.com
mailto:rolf@pantor.com
mailto:jimn@lasalletech.com
mailto:jmonteiro@bvmf.com.br
mailto:Aditya.kapur@cmegroup.com

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 7 of 60

Don Mendelson CME Group, Inc. Don.Mendelson@cmegroup.com Working Group
Participant and regular
contributor

Li Zhu Shanghai Stock
Exchange

lzhu@sse.com.cn Working Group
Participant and regular
contributor

1.2 Relevant and Related Standards

 Sources 1.2.1

These standards were sources for concepts but are non-normative for FIXP.

Reference Version Relevance Normative

UFO (UDP for
Orders) NASDAQ
OMX

Version
1.0, July
3, 2008

Basis for high performance session layer. No

SoupBinTCP
NASDAQ OMX

3.00 Basis for high performance session layer. No

FIXT Session
Layer
Specification

1.1 The previous FIX session layer specification No

XMIT alpha15 High performance session protocol design by Pantor
Engineering

No

 Related FIX Standards 1.2.2

The FIX Simple Open Framing Header standard governs how messages are delimited and has a specific
relationship mentioned in this specification. FIXP interoperates with the other FIX standards at
application and presentation layers, but it is not dependent on them. Therefore, they are considered
non-normative for FIXP.

Related Standard Version Reference location Relationship Normative

Simple Open
Framing Header

RC1 Optional usage at
presentation layer

Yes

FIX message
specifications

5.0 SP 2 Presentation and
application layers

No

FIX Simple Binary
Encoding

RC2 Optional usage at
presentation layer

No

Encoding FIX
Using ASN.1

Draft
Standard

 Optional usage at
presentation layer

No

Encoding FIX
Using GPB

RC2 Optional usage at
presentation layer

No

mailto:Don.Mendelson@cmegroup.com
mailto:lzhu@sse.com.cn

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 8 of 60

 Dependencies on Other Specifications 1.2.3

FIXP is dependent on several industry standards. Implementations of FIXP must conform to these
standards to interoperate. Therefore, they are normative for FIXP. Other protocols may be used by
agreement between counterparties.

Related Standard Version Reference location Relationship Normative

RFC 793
Transmission
Control Program
(TCP)

N/A http://tools.ietf.org/html/rfc793
and related standards

Uses transport Yes

RFC 768 User
Datagram
Protocol (UDP)

N/A http://tools.ietf.org/html/rfc768 Uses transport Yes

RFC4122 A
Universally
Unique Identifier
(UUID) URN
Namespace

N/A http://tools.ietf.org/html/rfc4122 Uses Yes

UTF-8, a
transformation
format of ISO
10646

N/A http://tools.ietf.org/html/rfc3629 Uses encoding Yes

Various
authentication
protocols

N/A Optional usage at
session layer

No

1.3 Intellectual Property Disclosure

Related Intellection Property Type of IP
(copyright,

patent)

IP Owner Relationship to
proposed standard

Blink
http://blinkprotocol.org/spec/BlinkSpec-
beta3.pdf

Copyright Pantor
Engineering

XMIT Copyright Pantor
Engineering

Basis for design of
protocol

Soup, SoupBinTCP, UFO (UDP for Orders),
and MoldUDP

Copyright NASDAQOMX FIXP is intended to
provide functionality
equivalent to these
protocols.

http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc768
http://tools.ietf.org/html/rfc4122
http://tools.ietf.org/html/rfc3629

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 9 of 60

1.4 Definitions

Term Definition

Client Initiator of session.

Credentials In FIXP, credentials are used only for business entity identification, not
as a security key.

Flow A unidirectional stream of messages. Each flow has one producer and
one or more consumers.

Idempotence Idempotence means that an operation that is applied multiple times
does not change the outcome, the result, after the first time

IP MC IP Multicast

Server Acceptor of session

Session A dialog for exchanging application messages between peers.
An established point-to-point session consists of a pair of flows, one in
each direction between peers. A multicast session consists of a single
flow from the producer to multiple consumers.

TCP Transmission Control Protocol

UDP User Datagram Protocol

2 Requirements

2.1 Business Requirements
Create an enhanced session protocol that can provide reliable, highly efficient, exchange of messages to
support high performance financial messaging, over a variety of transports.

Protocol shall be fit for purpose for current high message rates, low latency environments in financial
markets, but should be to every extent possible applicable to other business domains. There is no
reason to limit or couple the session layer to the financial markets / trading business domain without
extraordinary reason.

Support common message flow types: Recoverable, Unsequenced, Idempotent (operations guaranteed
to be applied only once), and None (for a one-way flow of messages).

Protocol shall support asymmetric models, such as market participant to market, in addition to peer-to-
peer (symmetric). Allow the communication of messages to multiple receivers (broadcast).

The session protocol does not require or recommend a specific authentication protocol. Counterparties
are free to agree on user authentication techniques that fit their needs.

2.2 Technical Requirements

 Protocol Layering 2.2.1

This standard endeavors to maintain a clear separation of protocol layers, as expressed by the Open
Systems Interconnection model (OSI). The responsibilities of a session layer are establishment,
termination and restart procedures and rules for the exchange of application messages.

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 10 of 60

The protocol shall be independent of message encoding (presentation layer), to provide the maximum
utility. Encoding independence applies both to session layer messages specified in this document as well
as to application messages. It is simpler if session protocol messages are encoded the same way as
application messages, but that is not a requirement of this session protocol.

Users are free to specify message encodings by agreement with counterparties. FIX provides Simple
Binary Encoding as well as mappings of FIX to other high performance encodings such as ASN.1, and
Google Protocol Buffers. See the list of related standards above. Other recognized encodings may follow
in the future.

Of necessity, the session protocol makes some adaptations for transport layer protocols used by the
session layer since the capabilities of common transports are quite different. In particular, TCP is
connection- and stream-oriented and implements its own reliable delivery mechanisms. Meanwhile,
UDP is datagram-oriented and does not guarantee delivery in order. Unfortunately, these characteristics
bleed across protocol layers.

 Security Mechanisms 2.2.2

FIXP does not specify security features for user authentication or privacy. If such features are desired, it
is recommended that proven mechanisms be employed in other protocol layers, such as a secure
transport.

 Low Overhead 2.2.3

Minimum overhead is added to the messages exchanged between peers, using only the strictly
necessary control messages.

By agreement between counterparties, a message framing protocol may be used to delimit messages.
This relieves the session layer of application message decoding to determine message boundaries. FIX
offers the Simple Open Framing Header standard for framing messages encoded with binary wire
formats. See standards references above.

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 11 of 60

3 Common Features

3.1 Usage and Naming Conventions
All symbolic names for messages and fields in this protocol should follow the same naming convention
as other FIX specifications: alphanumeric characters plus underscores without spaces.

3.2 Data Types
Data types are abstract. Actual encoding of FIXP is left to the implementation.

Logical Type Range Native Type Comments

u8 0..2^8-1

u16 0..2^16-1

u32 0..2^32-1

u64 0..2^64-1

UUID RFC 4122 compliant UUID The requirement is to provide a
mechanism that can be self-
generated and guaranteed free of
collision.
Implementers are encouraged to
adopt version 4.

String text UTF-8, length may need to be
specified as part of the encoding.

nanotime Time in nanoseconds u64 Number of nanoseconds since UNIX
epoch

DeltaMillisecs Number of milliseconds u32

Object Unspecified data content
Requires some way to determine
length

Enumeration A finite set of values Error and message type identifiers
are enumerated by symbolic name in
this specification. Wire format is
determined by a specific encoding.

3.3 FIXP Session Messages
The FIXP protocol defines several messages that are used to establish and tear down sessions and
control sequencing of messages for delivery. Message layouts are specified in this document by symbolic
names and the abstract data types listed above. Wire format details are provided by supplements to this
specification for each of the supported FIX encodings.

 Those supplements also explain how to distinguish session messages from application messages in that
specific encoding. FIXP does not require that application messages be in the same encoding as session
messages. With the use of Simple Open Framing Header to identify the encoding of the following
message, it is even possible to mix wire formats in a session. However, a common encoding for all
messages likely permits simpler implementation.

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 12 of 60

 Message Type Identification 3.3.1

Message types are listed in this document as an enumeration of symbolic names. Each FIX encoding tells
how message type identifiers are encoded on the wire.

See section 0 below for an enumeration of message types.

3.4 Message Sequencing

 Sequence Numbering 3.4.1

Sequence numbering supports ordered delivery and recovery of messages. In FIXP, only application
messages are sequenced, not session protocol messages. A Sequence message is used to start a
sequenced flow of application messages. Any applications message passed after a Sequence message is
implicitly numbered, where the first message after Sequence has the sequence number NextSeqNo.

Sending a Sequence message on an Unsequenced or None (one-way session) flow is a protocol violation.

Sequence
Field name Type Required Value Description

MessageType Enum Y Sequence

NextSeqNo u64 Y The sequence number of the next message
after the Sequence message.

 Message framing 3.4.2

FIXP does not require application messages to have a session layer header. Application messages may
have their own presentation layer header, depending on encoding. However, application messages may
immediately follow Sequence without any intervening session layer prologue.

Optionally, application messages may be delimited by use of the Simple Open Framing Header. This is
most useful if session message encoding is different than application message encoding or if a session
carries application messages in multiple encodings. The framing header identifies the encoding of the
message that follows and gives its overall length. If it is used, then FIXP need not parse application
messages to determine length and keep track of message counts in a flow.

 Application message sequencing considerations 3.4.3

An application layer defined on top is obviously free to put any required application level sequencing
inside messages.

 Datagram oriented protocol considerations 3.4.4

Using a datagram oriented transport like UDP, each datagram carrying a sequenced flow, the Sequence
message is key to detecting packet loss and packet reordering and must precede any application
messages in the packet.

FIXP provides no mechanism for fragmenting messages across datagrams. In other words, each
application message must fit within a single datagram on UDP.

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 13 of 60

 Multiplexed session considerations 3.4.5

If sessions are multiplexed over a transport, they are framed independently. When multiplexing, the
Context message expands Sequence to also specify the session being sequenced.
If flows are multiplexed over a transport, the transport does not imply the session. Context is used to set
the session for the remainder of the current datagram (in a datagram oriented transport) or until a new
Context is passed. In a sequenced flow, Context can take the role of Sequence by including NextSeqNo
(optimizes away the Sequence that would otherwise follow).

Context
Field name Type Required Value Description

MessageType Enum Y Context

SessionId UUID Y Session Identifier

NextSeqNo u64 N The sequence number of the next
message after the Context message.

 Sequence context switches 3.4.6

A change in session context ends the sequence of messages implicitly and the sender must pass a
Sequence or Context message again before starting to send sequenced messages. A Sequence message
must be sent if the session is not multiplexed and Context must be sent if it is multiplexed.
Changes of session context include:

 Interleaving of new, real-time messages and retransmitted messages.

 Switching from one multiplexed session to another when sharing a transport.

3.5 Session Properties

 Session Identification 3.5.1

Each session is identified by a unique Session ID encoded as a UUID version 4 (RFC 4122) assigned by the
client. The benefit of using an UUID is that it is effortless to allocate in a distributed system. It is also
simple and efficient to hash and therefore easy to look up at the endpoints. The downside is a larger size
overhead. The identifier however does not appear in the stream except once at the start of each
datagram, when using UDP, or when sessions are multiplexed, regardless of the underlying transport
that is used. For a non-multiplexed TCP session, the identifier therefore appears only once during the
lifetime of the TCP session. A UUID is intended to be unique, not only amongst currently active sessions,
but for all time. Reusing a session ID is a protocol violation.

 User Identification 3.5.2

Clients that initiate sessions are identified by credentials that are assigned by or known to their
counterparties. Credentials identify business entities, such as trading firms.

Credentials should not be used as keys or passwords for authentication, at least not without other
supporting security mechanisms. Note that permanent or even rotating passwords are vulnerable to
replay attack and thus have little security value.

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 14 of 60

 Session Lifetime 3.5.3

A logical session is established between counterparties and lasts until information flows between them
are complete. Commonly, such flows are concurrent with daily trading sessions, but no set time limit is
imposed by this protocol. Rather, timings for session start and end are set by agreement between
counterparties.

A logical session is identified by a session ID, as described above, until its information flows are finalized.
After finalization, the old session ID is no longer valid, and messages are no longer recoverable.
Counterparties may subsequently start a new session under a different ID.

A logical session is bound to a transport, but a session may outlive a transport connection. The binding
to a transport may be terminated intentionally or may be triggered by an error condition. However, a
client may reconnect and bind the existing session to the new transport. When re-establishing an
existing session, the original session ID continues to be used, and recoverable messages that were lost
by disconnection may be recovered.

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 15 of 60

4 Point-to-Point Session Protocol
A point-to-point session between a client and server is conducted over a bidirectional transport, such as
TCP or UDP unicast. Point-to-point protocol is designed for private flows of information between
organizations. Optionally, multiple sessions belonging to an organization may be multiplexed over a
shared transport.

4.1 Summary of Messages that Control Lifetime
Logical sessions are created by using the Negotiation message. The session ID is sent in the Negotiation
message and that ID is used for the lifetime of the session.

After negotiation is complete, the client sends an Establish message to reach the established state. Once
established, exchange of application messages may proceed. The established state is concurrent with
the lifetime of a connection-oriented transport such as TCP. A client can re-establish a previous session
after reconnecting without any further negotiation. Thus, Establish binds the session to the new
transport instance.

To signal a counterparty that a disconnection is about to occur, a Terminate message is sent. This
unbinds the transport from the session, but it does not end a logical session.

A session that has a recoverable flow may be re-established by sending Establish with the same session
ID, and an exchange of messages may continue until all business transactions are finished.

A logical session is ended by sending a FinishedSending message. Thereafter, no more application
messages should be sent. The counterparty responds with FinishedReceiving when it has processed the
last message, and then the transport is terminated for the final time for that session. Once a flow is
finalized and the transport is unbound, a session ID is no longer valid and messages previously sent on
that session are no longer recoverable.

4.2 Session Initiation and Negotiation
A negotiation dialog is provided to support a session negotiation protocol that is used for a client to
declare what id it will be using, without having to go out of band. There is no concept of resetting a
session. Instead of starting over a session, a new session is negotiated - a SessionId in UUID form is
cheap.
The optional session negotiation is expected to occur at session initiation.

 Flow Type 4.2.1

The negotiation protocol identifies the types of message flow in each direction of a session.

FlowType = Recoverable | Unsequenced | Idempotent|None

From highest to lowest delivery guarantee, the flow types are:

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 16 of 60

 Recoverable: Guarantees exactly-once message delivery. If gaps are detected, then missed
messages are recovered by retransmission.

 Idempotent: Guarantees at-most-once delivery. If gaps are detected, the sender is notified, but
recovery is under control of the application, if it is done at all.

 Unsequenced: Makes no delivery guarantees (best-effort). This choice is appropriate if
guarantees are unnecessary or if recovery is provided at the application layer or through a
different communication channel.

 None: No application messages are delivered in one direction of a session. If ClientFlow is None,
then application messages flow only from server to client.

By agreement between counterparties, only certain of these flow types may be supported for a
particular service.

 Initiate Session Negotiation 4.2.2

Negotiate message is sent from client to server.

Negotiate
Field name Type Required Value Description

MessageType Enum Y Negotiate

Timestamp nanotime Y Time of request

SessionId UUID Y Session Identifier

ClientFlow FlowType
Enum

Y Type of flow from client to server

Credentials Object N Optional credentials to identify the
session initiator. Format to be
determined by agreement between
counterparties.

 Accept Session Negotiation 4.2.3

When a session is accepted by a server, it sends a NegotiationResponse in response to a Negotiate
message.

NegotiationResponse
Field name Type Required Value Description

MessageType Enum Y NegotiationResponse

RequestTimestamp nanotime Y Matches Negotiate.Timestamp

SessionId UUID Y Session Identifier

ServerFlow FlowType
Enum

Y Type of flow from server to client

 Reject Session Negotiation 4.2.4

When a session cannot be created, a server sends NegotiationReject to the client, giving the reason for
the rejection. No further messages should be sent, and the transport should be terminated.

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 17 of 60

NegotiationRejectCode = Credentials | Unspecified | FlowTypeNotSupported | DuplicateId

Rejection reasons:

 Credentials: failed authentication because identity is not recognized, or the user is not
authorized to use a particular service.

 FlowTypeNotSupported: server does not support requested client flow type.

 DuplicateId: session ID is non-unique.

 Unspecified: Any other reason that the server cannot create a session.

If negotiation is re-attempted after rejection, a new session ID should be generated.

NegotiationReject
Field name Type Required Value Description

MessageType Enum Y NegotiationReject

RequestTimestamp nanotime Y Matches
Negotiate.Timestamp

SessionId UUID Y Session Identifier

Code NegotiationReject-
Code Enum

Y

Reason string N Reject reason details

 Session Negotiation Sequence Diagram 4.2.5

Client Server

Negotiate

NegotiationResponse

NegotationReject

alt

[Failed Negotiation]

[Successful Negotiation]

Figure 1 Session Negotiation Sequence Diagram

4.3 Session Establishment

Establish attempts to bind the specified logical session to the transport that the message is passed over.
The response to Establish is either EstablishmentAck or EstablishmentReject.

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 18 of 60

 Establish 4.3.1

The client sends Establish message to the server and awaits acknowledgement.

There is no specific timeout value for the wait defined in this protocol. Experience should be a guide to
determine an abnormal wait after which a server is considered unresponsive. Then establishment may
be retried or out-of-band inquiry may be made to determine application readiness.

Establish
Field name Type Required Value Description

MessageType Enum Y Establish

Timestamp nanotime Y Time of request

SessionId UUID Y Session Identifier

KeepaliveInterval DeltaMillisecs Y The longest time in milliseconds the
initiator will remain silent before
sending a keep alive message

NextSeqNo u64 N For re-establishment of a
recoverable server flow only, the
next application sequence number
to be produced by the client.

Credentials object N Optional credentials to identify the
client.

Counterparties may agree on a valid range for KeepaliveInterval.
The server should evaluate NextSeqNo to determine whether it missed any messages after re-
establishment of a recoverable flow. If so, it may immediately send a RetransmitRequest after sending
EstablishAck.

 Establish Acknowledgment 4.3.2

Used to indicate the acceptor acknowledges the session. If the communication flow from this endpoint
is recoverable, it will fill the NextSeqNo field, allowing the initiator to start requesting the replay of
messages that it has not received.

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 19 of 60

EstablishmentAck
Field name Type Required Value Description

MessageType Enum Y EstablishmentAck

SessionId UUID Y SessionId is included only
for robustness, as
matching
RequestTimestamp is
enough

RequestTimestamp nanotime Y Matches
Establish.Timestamp

KeepaliveInterval DeltaMillisecs Y The longest time in
milliseconds the acceptor
will wait before sending a
keep alive message

NextSeqNo u64 N For a recoverable server
flow only, the next
application sequence
number to be produced
by the server.

The client should evaluate NextSeqNo to determine whether it missed any messages after re-
establishment of a recoverable flow. If so, it may immediately send a RetransmitRequest .

 Establish Reject 4.3.3

EstablishmentRejectCode = Unnegotiated | AlreadyEstablished | SessionBlocked | KeepaliveInterval |
Credentials | Unspecified

Rejection reasons:

 Unnegotiated: Establish request was not preceded by a Negotiation or session was finalized,
requiring renegotiation.

 AlreadyEstablished: EstablishmentAck was already sent; Establish was redundant.

 SessionBlocked: user is not authorized

 KeepaliveInterval: value is out of accepted range.

 Credentials: failed because identity is not recognized, or the user is not authorized to use a
particular service.

 Unspecified: Any other reason that the server cannot establish a session.

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 20 of 60

EstablishmentReject
Field name Type Required Value Description

MessageType Enum Y EstablishmentReject

SessionId UUID Y SessionId is
redundant and
included only for
robustness

RequestTimestamp nanotime Y Matches
Establish.Timestamp

Code EstablishmentReject-
Code Enum

Y

Reason string N Reject reason
details

 Session Establishment Sequence Diagram 4.3.4

Client Server

Establish

EstablishmentAck

EstablishmentReject

alt

[Failed Establishment]

[Successful Establishment]

Figure 2 Session Establishment Sequence Diagram

4.4 Transport Termination
Terminate is a signal to the counterparty that this side is dropping the binding between the logical
session and the underlying transport. A session may terminate its transport if there are no more
messages to send but it intends to restart at a later time.

An established session becomes terminated (stops being established) for the following reasons:

 One of the peers receives a Terminate message.

 The transport was abruptly disconnected.

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 21 of 60

 The keep-alive interval expired and no keep-alive message received. It is recommended to allow
some leniency in timeout to allow for slight mismatches of timers between parties.

 The peer violated this protocol. A specific example of protocol violation is to send a
RetransmitRequest while another one is in progress.

 Additionally, a transport should be terminated if an unrecoverable error occurs in message
parsing or framing.

TerminationCode = Finished | UnspecifiedError | ReRequestOutOfBounds | ReRequestInProgress

Terminate
Field name Type Required Value Description

MessageType Enum Y Terminate

SessionId UUID Y SessionId is redundant and
included only for robustness

Code TerminationCode
Enum

Y

Reason string N Reject reason details

 Terminate Response 4.4.1

On a point-to-point session, either peer may initiate termination. Upon receiving a Terminate message,
the acceptor must respond to the initiator with a Terminate message before disconnecting the
transport.
On a connectionless transport such as UDP, the Terminate message informs the peer that message
exchange is suspended.
On a connection-oriented transport such as TCP, when the initiator receives the Terminate response, it
must disconnect the transport from its end. When the acceptor receives the TCP peer reset signal, it
completes closing of the transport.

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 22 of 60

 Terminate Session Sequence Diagrams 4.4.2

Initiator Acceptor

Terminate

terminate network connection

Terminate

terminate network connection

TCP peer reset signal

Connection oriented
transport

Figure 3 Termination Sequence Diagram - TCP

Initiator Acceptor

Terminate

Terminate

Datagram oriented transport

Figure 4 Termination Sequence Diagram - UDP

4.5 Session Heartbeat

Each party must send a heartbeat message during each interval in which no application messages were
sent. A client’s heartbeat timing is governed by the KeepaliveInterval value it sent in the Establish
message, and a server is governed by the value it sent in EstablishAck.

Each party should check whether it has received any message from its counterparty in the expected
interval. Silence is taken as evidence that the transport is no longer valid, and the session is terminated
in that event.

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 23 of 60

For recoverable or idempotent flows, the gap detection can be achieved by sending Sequence messages
respecting the keepalive interval.
For Unsequenced and None (one-way session) flows, there is the UnsequencedHeartbeat message to
detect that a logical session has disappeared or that there is a problem with the transport, allowing the
peer to terminate session state timely and to potentially reestablish the session.

UnsequencedHeartbeat
Field name Type Required Value Description

MessageType Enum Y UnsequencedHeartbeat

When a session is being finalized, but the FinishedReceiving message has not yet been received, then
FinishedSending message is used as the heartbeat.

On TCP, it is recommended that Nagle algorithm be disabled to prevent the transmission of heartbeats
and other messages from being delayed, potentially causing unnecessary session termination.

4.6 Resynchronization
The following sections describe resynchronization of a recoverable flow.

 Retransmission Request 4.6.1

When receiving a recoverable message flow, a peer may request sequenced messages to be
retransmitted by sending a RetransmitRequest message, which is answered by one or more
Retransmission messages (or with a Terminate message if the request is invalid).

Only one RetransmitRequest is allowed in-flight at a time per session. Another RetransmitRequest may
not be sent until a response has been received from a previous request.

The receiver on a recoverable flow should accept messages with a higher sequence number after
recognizing a gap. However, the application should queue messages for in-sequence processing after a
requested retransmission is received.

Sending a RetransmitRequest to the sender of an Idempotent ,Unsequenced or None flow is a protocol
violation. In that case, the session should be terminated.

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 24 of 60

RestransmitRequest
Field name Type Required Value Description

MessageType Enum Y RestransmitRequest

SessionId UUID Y

Timestamp nanotime Y Timestamp used as a unique
identifier of the request

FromSeqNo u64 Y Sequence number of the first
message requested

Count u32 Y Count of messages requested

 Retransmission Responses 4.6.2

Retransmission implies that the subsequent messages are sequenced without requiring that a Sequence
message is passed. In a datagram oriented transport, Retransmission is passed in every single
retransmission datagram.

Restransmission
Field name Type Required Value Description

MessageType Enum Y Restransmission

SessionId UUID Y Defeats the need for Context
when multiplexing

NextSeqNo u64 Y Sequence number of the next
message to be retransmitted

RequestTimestamp nanotime Y Value from RetransmitRequest
Timestamp field. Used to match
responses to requests.

Count u32 Y Count of messages to be
retransmitted in a batch

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 25 of 60

 Retransmission Diagram 4.6.2.1

Consumer Producer

RetransmitRequest

loop

Restransmission

retransmitted messages

While NextSeqNo + Count < Expected SeqNo

Figure 5 Retransmission Diagram

 Interleaving and Pacing Retransmissions 4.6.2.2
This protocol does not require real-time messages to be held by the sender until retransmission of a
range of messages is complete. Rather, ranges of retransmitted and real-time messages may be
interleaved. Each time some messages are retransmitted, they must be preceded by a Retransmission
message with a count of messages. Each time real-time flow resumes, a Sequence message (or Context
message on a multiplexed flow) must be sent.

The provider of a recoverable flow need not retransmit all requested messages in a single batch. Rather,
retransmission may be executed as an iterative process. It is the requester’s responsibility to determine
whether the current batch fills the original gap. If not, it sends another RetransmitRequest for the
remainder. Requests and responses proceed iteratively until all desired messages have been
retransmitted. This interaction automatically paces the retransmission flow while allowing real-time
messages to flow through uninhibited.

Pacing is the responsibility of the retransmitter. It is managed by controlling the size of batches of
retransmitted messages. To maximize interleaving with real-time messages without queuing, it is
recommended that messages be retransmitted in small batches. Optimally, a batch should not exceed to
the size of a datagram, even on a TCP stream.

However, when retransmission is provided through a separate recovery session without interleaving
real-time messages, then the retransmitter may choose to fulfill requests in a single batch.

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 26 of 60

 Retransmit Rejection 4.6.2.3
If the provider of a recoverable flow is unable to retransmit requested messages, it responds with a
RetransmitReject message.

RetransmitRejectCode = OutOfRange | InvalidSession | RequestLimitExceeded

Rejection reasons:

 OutOfRange : NextSeqNo + Count is beyond the range of sequence numbers

 InvalidSession: The specified SessionId is unknown or is not authorized for the requester to
access.

 RequestLimiitExceeded : The message Count exceeds a local rule for maximum retransmission
size.

RestransmitReject
Field name Type Required Value Description

MessageType Enum Y RestransmitReject

SessionId UUID Y Session identifier

RequestTimestamp nanotime Y Value from
RetransmitRequest
Timestamp field. Used to
match responses to
requests.

Code RetransmitRejectCode
Enum

Y

Reason string N Reject reason details

 RetransmitReject Diagram 4.6.3

ConsumerConsumer Producer

RetransmitRequest

RetransmitReject
RetransmitRejectCode = OutOfRange | InvalidSession | RequestLimitExceeded

alt

[Invalid Retransmission Request]

[Retransmission Accepted]

Restransmission

retransmitted messages

Figure 5 RetransmitReject Diagram

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 27 of 60

 Retransmission Violations 4.6.4

For a RetransmitRequest that the requester should have known was invalid with certainty, the sender
should terminate the session. Terminate message with ReRequestInProgress code should be sent if it
sees a premature retransmit request.

 Retransmit Violation Diagram 4.6.5

Consumer Producer

RetransmitRequest

Terminate
TerminationCode = ReRequestOutOfBounds | ReRequestInProgress

alt

[Invalid Retransmission Request]

[Retransmission Accepted]

Restransmission

retransmitted messages

Figure 6 Retransmit Violation Diagram

 FIX Application Layer Recovery 4.6.6

As an alternative to a FIXP recoverable flow, application layer sequencing and recovery may be used. To
avoid duplication of effort in two layers of the protocol stack, application layer sequencing should be
used with a FIXP Unsequenced flow.

See FIX application specifications for a description of the ApplicationSequenceControl group and these
message types:

 ApplicationMessageReport

 ApplicationMessageRequest

 ApplicationMessageRequestAck

4.7 Finalizing a Session
Finalization is a handshake that ends a logical session when there are no more messages to exchange.

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 28 of 60

 Finish Sending 4.7.1

A FinishedSending message is sent to begin finalizing a logical session when the last application message
in a flow has been sent.

The sender of this message awaits a FinishedReceiving response. It the wait takes longer than
KeepaliveInterval for the flow, it should send FinishedSending messages as heartbeats until finalization
is complete.

FinishedSending
Field name Type Required Value Description

MessageType Enum Y FinishedSending

SessionId UUID Y SessionId is redundant and
included only for robustness

LastSeqNo u64 N Populated for an idempotent or
recoverable flow

The counterparty should evaluate LastSeqNo to determine whether it has processed the flow to the end.
If received on a recoverable flow, the counterparty may send a RetransmitRequest to recover any
missed messages before acknowledging finalization of the flow. On an idempotent flow, it should send
NotApplied to notify the sender of the gap.

 Finish Receiving 4.7.2

Upon processing the last application message indicated by the FinishedSending message (possibly
received on a retransmission), a FinishedReceving message is sent in response.

When a FinishedReceiving has been received by the party that initiated the finalization handshake, a
Terminate message is sent to unbind the transport. At that point, the session is considered finalized, and
its session ID is no longer valid.

FinishedReceiving
Field name Type Required Value Description

MessageType Enum Y FinishedReceiving

SessionId UUID Y SessionId is redundant and included only
for robustness

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 29 of 60

 Terminating a Recoverable Session Sequence Diagram 4.7.3

Producer Consumer

FinishedSending

FinishedReceiving

RetransmitRequest

loop

Restransmission

retransmitted messages

Optionally, fill a message gap before
acknowledging flow finalization.

All real-time messages and retransmissions
have been received.

Unbind transport—see Terminate

Figure 7 Recoverable Session Termination Sequence Diagram

4.8 Idempotent Flow
When using the idempotent flow, the protocol ensures that each application message is an idempotent
operation that will be guaranteed applied only once.

To guarantee idempotence, a unique sequential identifier has to be allocated to each operation to be
carried out. The response flow must identify which operations that have been carried out, and is
sequenced. The lack of acknowledgment of an operation triggers the operation to be reattempted (at
least once semantics). The lack of acknowledgment can be triggered by the acknowledgment of a later
operation or by the expiration of a timer. The side carrying out an operation must filter out operations
with a duplicate identifier (at most once semantics). If a transaction has already been applied, a
duplicate request should be silently dropped. The combination of at-most-once and at-least-once
semantics provide exactly-once semantics, making any operation tagged with a unique id to be
idempotent.

The sequence number is implicit and is defined using a Sequence message. The first message after
Sequence has the sequence number NextSeqNo. The same lifetime rules apply for the implicit sequence
number in the idempotent flow, as for the implicit sequence number in the recoverable flow.
Unless the recoverable server return flow identifies the result of operations at the application level,
implementers may opt to use the following Applied or NotApplied messages to return the status of the
operation.

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 30 of 60

 Applied 4.8.1

This is an optional application response for non-standard messages. Standard FIX semantics provide
application layer acknowledgements to requests, e.g. Execution Report in response to New Order Single.
The principle is to use application specific acknowledgement messages where possible; use the Applied
message where an application level acknowledgement message does not exist.
Since Applied is an application message, it will be reliably delivered if returned on a recoverable flow.

Applied
Field name Type Required Value Description

MessageType Enum Y Applied

FromSeqNo u64 Y The first applied sequence number

Count u32 Y How many messages have been applied

 NotApplied 4.8.2

When a receiver on an idempotent flow recognizes a sequence number gap, it should send the
NotApplied message immediately but continue to accept messages with a higher sequence number after
the gap.

The sender on an idempotent flow uses the NotApplied message to discover which its requests have not
been acted upon. It has a responsibility to make a decision about recovery at an application layer. It may
decide to resend the transactions with new sequence numbers, to send different transactions, or to do
nothing.

Like Applied, the NotApplied message is handled as an application message. That is, it consumes a
sequence number.
It is recommended that the return flow of an idempotent request flow be recoverable to allow Applied
and NotApplied message to be resynchronized if necessary. Thus, the sender can determine with
certainty (perhaps after some delay) which requests have been accepted.

Sending NotApplied for a Recoverable, Unsequenced or None flow is a protocol violation. On a
recoverable flow, RetransmitRequest should be used instead.

NotApplied
Field name Type Required Value Description

MessageType Enum Y NotApplied

FromSeqNo u64 Y The first not applied sequence number

Count u32 Y How many messages haven´t been applied

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 31 of 60

 Idempotent Flow Sequence Diagram 4.8.3

Producer Consumer

Application
Message

Applied or an application-
specific acknowledgement

NotApplied

alt

[Message not Applied]

[Message Applied]

Figure 8 Idempotent Flow sequence diagram

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 32 of 60

5 Multicast Session Protocol
A multicast session conveys messages one way from a publisher to any number of listeners. It is
conducted over a connectionless transport such UDP multicast. Multicast session protocol is typically
used for publishing market data or common reference information to many consumers. Multiple
independent flows may be multiplexed over a shared multicast transport.

5.1 Multicast Session Lifecycle
Since a multicast transport is connectionless, there is no negotiation or binding or unbinding of the
transport as in the point-to-point protocol. Thus, Negotiation and Establishment messages and their
respective responses are not used.

Multicast addresses and publishing schedules must be provided out-of-band to listeners. To capture all
messages, listeners must be ready to receive at scheduled times. Publishing continues until the end of a
logical flow.

 Multicast Session Establishment 5.1.1

Like a point-to-point session, a multicast session is identified by a UUID. Each time a session is initiated,
a new UUID should be generated, and sequence numbers of subsequent application messages begin
with 1.

 Topic Message 5.1.1.1
To associate a transient UUID to a permanent or semi-permanent classification of messages, a Topic
message is used to initiate a flow. Multiple topics may be published on a transport.

FlowType = Recoverable | Idempotent

Valid flow types on a multicast session are:

 Recoverable: Messages are sequenced and recoverable. Since the transport is one-way,
RetransmitRequests must be delivered through a separate session, however.

 Idempotent: Messages are sequenced to allow detection of loss but any missed messages are
not recoverable.

Each Topic carries a Classification for the flow to associate it to a permanent or semi-permanent
application layer entity. Typical classifications are product types, market symbols or the like.

To support late joiners, Topic messages should be repeated at regular intervals on a session. This
specification does not dictate a specific interval, but the shorter the interval, the less time it takes for a
late joiner to identify flows.

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 33 of 60

Topic
Field name Type Required Value Description

MessageType Enum Y Topic

SessionId UUID Y Session Identifier

Flow FlowType
Enum

Y Type of flow from publisher

Classification Object Y Category of application messages that
follow

 Finalizing a Multicast Session 5.1.2

Finalization ends a logical flow when there are no more application messages to send. A multicast flows
is finalized by transmitting a FinishedSending message. No further messages may be sent, and the
session ID is no longer valid after that.

5.2 Session Heartbeat
During the lifetime of a multicast session, its publisher should send Sequence or Context messages as a
heartbeat at regular intervals when the session is otherwise inactive. This allows a receiver to tell
whether a session is live and has not reached the end of its logical flow.

See the section Sequence above for a description of sequence numbering and the Sequence message.

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 34 of 60

6 Summary of Session Messages

6.1 FIXP Session Messages
Stage Message Name Purpose Flow Types

R
ec

o
ve

ra
b

le

Id
em

p
o

te
n

t

U
n

se
q

u
en

ce
d

N
o

n
e

M
u

lt
ic

as
t

Initialization Negotiate Initiates session
  

NegotiationResponse Accepts session
  

NegotiationReject Rejects session
  

Topic Announces a flow 

Binding Establish Binds session to transport
  

EstablishmentAck Accepts binding
  

EstablishmentReject Rejects binding
  

Transferring Sequence Initiates a sequenced flow, keep-alive
  

 Context Multiplexing
   

UnsequencedHeartbeat Keep-alive 

RetransmitRequest Requests resynchronization


Retransmission Resynchronization


Unbinding Terminate Unbinds a transport
  

Finalizing FinishedSending Ends a logical flow
   

FinishedReceiving Ends a logical flow
  

6.2 Related Application Messages
These optional application messages respond to application messages on an idempotent flow.

Stage Message Name Purpose

Transferring Applied Acknowledge idempotent operations

NotApplied Negative acknowledgement of idempotent operations

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 35 of 60

6.3 Summary of Protocol Violations

If any of these violations by a peer is detected, the session should be terminated.

 Sending a session message that is inappropriate to the flow type, such as a Sequence message
on an unsequenced flow. See table above.

 Sending an application message on a session that is not in established state.

 Reusing the session ID of a session that was finalized.

 Sending a RetransmitRequest while a retransmission is in progress.

 Sending a RetransmitRequest with request range out of bounds. That is, it is a violation to
request a retransmission of a message with a sequence number that has not been sent yet.

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 36 of 60

7 Appendix A - Usage Examples (TCP)
These use cases contain sample values for illustrative purposes only

7.1 Initialization

 Session negotiation (both Recoverable) 7.1.1

Message
Received

Message
Sent

Session ID Timestamp Request
Timestamp

Client Flow Server Flow Credentials

Negotiate ABC T1 -- Recoverable -- 123

 Negotiation
Response

ABC -- T1
-- Recoverable --

 Session negotiation (both Unsequenced) 7.1.2

Message
Received

Message
Sent

Session ID Timestamp Request
Timestamp

Client Flow Server Flow Credentials

Negotiate ABC T1 -- Unsequenced -- 123

 Negotiation
Response

ABC -- T1
-- Unsequenced --

 Session negotiation (Client Idempotent and Server Recoverable – 7.1.3
highly recommended)

Message
Received

Message
Sent

Session ID Timestamp Request
Timestamp

Client Flow Server Flow Credentials

Negotiate ABC T1 -- Idempotent -- 123

 Negotiation
Response

ABC -- T1
-- Recoverable --

 Session negotiation (Client None and Server Recoverable) 7.1.4

Message
Received

Message
Sent

Session ID Timestamp Request
Timestamp

Client Flow Server Flow Credentials

Negotiate ABC T1 -- None -- 123

 Negotiation
Response

ABC -- T1
-- Unsequenced --

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 37 of 60

 Session negotiation (Client Unsequenced and Server Recoverable) 7.1.5

Message
Received

Message
Sent

Session ID Timestamp Request
Timestamp

Client Flow Server Flow Credentials

Negotiate ABC T1 -- Unsequenced -- 123

 Negotiation
Response

ABC -- T1
-- Recoverable --

 Session negotiation (Client None and Server Unsequenced) 7.1.6

Message
Received

Message
Sent

Session ID Timestamp Request
Timestamp

Client Flow Server Flow Credentials

Negotiate ABC T1 -- None -- 123

 Negotiation
Response

ABC -- T1
-- Unsequenced --

 Session negotiation (rejects) 7.1.7

 Bad credentials 7.1.7.1
For example – Valid Credentials are 123 but Negotiate message is sent with Credentials as 456 then it will be
rejected.
Message
Received

Message
Sent

Session ID Timestamp Request
Timestamp

Client
Flow

 Code Reason Credentials

Negotiate ABC T1 -- Idempot
ent

 -- 456

 Negotiation
Reject

ABC -- T1
-- Bad

Credentials
 Invalid
Trader ID

 --

 Flow type not supported 7.1.7.2
For example – Recoverable flow from Client is not supported but Negotiate message is sent with Client Flow as
Recoverable then it will be rejected.
Message
Received

Message
Sent

Session ID Timestamp Request
Timestamp

Client
Flow

 Code Reason Credentials

Negotiate ABC T1 -- Recover
able

 -- -- 123

 Negotiation
Reject

ABC -- T1
--

FlowTypeNot
Supported

 Client
Recoverable
Flow
Prohibited

 --

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 38 of 60

 Invalid session ID 7.1.7.3
For example – Session ID does not follow UUID or GUID semantics as per RFC 4122 and Negotiate message is sent
with Session ID as all zeros then it will be rejected.
Message
Received

Message
Sent

Session ID Timestamp Request
Timestamp

Client
Flow

 Code Reason Credentials

Negotiate 000 0 -- Idempot
ent

 -- -- 123

 Negotiation
Reject

000 -- 0
--

Unspecified Invalid
SessionID
Format

 --

 Invalid request timestamp 7.1.7.4
For example – Timestamp follows Unix Epoch semantics and is to be sent with nanosecond level precision but
Negotiate message is sent with Timestamp as Unix Epoch but expressed as number of seconds then it will be
rejected.
Message
Received

Message
Sent

Session ID Timestamp Request
Timestamp

Client
Flow

 Code Reason Credentials

Negotiate ABC 86400 -- Idempot
ent

 -- -- 123

 Negotiation
Reject

ABC -- 86400
--

Unspecified Invalid
Timestamp
Format

 --

 Mismatch of sessionID/RequestTimestamp 7.1.7.5
For example – the session identifier and the request timestamp in the NegotiationResponse do not match with the
Negotiate message then the acknowledgment MUST be ignored and an internal alert may be generated followed
by a new Negotiate message
Message
Received

Message
Sent

Session ID Timestamp Request
Timestamp

Client Flow Server Flow Credentials

Negotiate ABC T1 -- Recoverable -- 123

 Negotiation
Response

DEF -- T2
-- Recoverable --

<Ignore NegotiationResponse message since it contains incorrect Session ID and/or RequestTimestamp and Generate
Internal Alert and Possibly Retry>

Negotiate XYZ T3 -- Recoverable -- 123

<New Negotiate message should contain new Session ID>

 NegotiationResponse or Reject Not Received 7.1.7.6
For example – the Negotiate message is neither accepted nor rejected and one KeepAliveInterval* has lapsed then
an internal alert may be generated followed by a new Negotiate message.
Message
Received

Message
Sent

Session ID Timestamp Request
Timestamp

Client Flow Server Flow Credentials

Negotiate ABC T1 -- Recoverable -- 123

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 39 of 60

<One KeepAliveInterval has lapsed without any response>

Negotiate XYZ T3 -- Recoverable -- 123

<New Negotiate message should contain new Session ID>

*Even though the KeepAliveInterval is part of the Establish message, generally speaking there will be a
recommended value or range agreed to by the counterparties which can serve as a catch-all for these
types of scenarios.

7.2 Binding

 Establishment (Recoverable) 7.2.1

Message
Received

Message
Sent

Session ID Timestamp Request
Timestamp

Client Flow Keep Alive
Interval

Next
SeqNo

Server Flow

Negotiate ABC T1 -- Recoverable -- -- --

 Negotiation
Response

ABC -- T1
-- -- --

Recoverable

Establish ABC T2 -- -- 10 1 --

 Establishme
ntAck

ABC -- T2
--

 10 1 --

 Establishment (Unsequenced) 7.2.2

Message
Received

Message
Sent

Session ID Timestamp Request
Timestamp

Client Flow Keep Alive
Interval

Next
SeqNo

Server Flow

Negotiate ABC T1 -- Unsequenced -- -- --

 Negotiation
Response

ABC -- T1
-- -- -- Unsequenced

Establish ABC T2 -- -- 10 -- --

 Establish
mentAck

ABC -- T2
--

 10 -- --

 Establishment (idempotent) 7.2.3

Message
Received

Message
Sent

Session ID Timestamp Request
Timestamp

Client Flow Keep Alive
Interval

Next
SeqNo

Server Flow

Negotiate ABC T1 -- Idempotent -- -- --

 Negotiation
Response

ABC -- T1
-- -- -- Recoverable

Establish ABC T2 -- -- 10 1 --

 Establish
mentAck

ABC -- T2
--

 10 1 --

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 40 of 60

 Establishment (none) 7.2.4

Message
Received

Message
Sent

Session ID Timestamp Request
Timestamp

Client Flow Keep Alive
Interval

Next
SeqNo

Server Flow

Negotiate ABC T1 -- None -- -- --

 Negotiation
Response

ABC -- T1
-- -- -- None

Establish ABC T2 -- -- 10 -- --

 Establish
mentAck

ABC -- T2
--

 10 -- --

 Establishment rejects 7.2.5

 Unnegotiated 7.2.5.1
For example – Trying to send an Establish message without first Negotiating the session will result in the
Establishment message being rejected.
Message
Received

Message
Sent

Session ID Timestamp Request
Timestamp

Code Reason Keep
Alive
Interval

Establish ABC T2 -- -- -- 10

 Establish
ment
Reject

ABC -- T2

Unnegotiated

 Establishment
Not Allowed
Without
Negotiation

 --

 Already established 7.2.5.2
For example – Trying to send an Establish message when the session itself is already Negotiated and Established
will result in the Establishment message being rejected.

Message
Received

Message
Sent

Session ID Timestamp Request
Timestamp

Code Reason Keep Alive
Interval

Negotiate ABC T1 -- -- -- --

 Negotiation
Response

ABC -- T1
-- -- --

Establish ABC T2 -- -- -- 10

 Establish
mentAck

ABC -- T2
--

 -- 10

Establish ABC T3 -- -- -- 10

 Establish
mentReject

ABC -- T3 Already
Established

 Session is Already
Established

 --

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 41 of 60

 Session blocked 7.2.5.3
For example – if a particular Session ID has been blocked for bad behavior and is not allowed to establish a session
with the counterparty then also the Establishment message will be rejected.
Message
Received

Message
Sent

Session ID Timestamp Request
Timestamp

Code Reason Keep Alive
Interval

Negotiate ABC T1 -- -- -- --

 NegotiationR
esponse

ABC -- T1
-- -- --

Establish ABC T2 -- -- -- 10

 Establishmen
tReject

ABC -- T2
Session
Blocked

 Session Has Been
Blocked, Please
Contact Market
Operations

 10

 Invalid keep alive interval 7.2.5.4
For example – if the bilateral rules of engagement permit a KeepAliveInterval no smaller than 10 milliseconds then
an Establishment message sent with a KeepAliveInterval of 1 millisecond will be rejected.
Message
Received

Message
Sent

Session ID Timestamp Request
Timestamp

Code Reason Keep Alive
Interval

Negotiate ABC T1 -- -- -- --

 NegotiationR
esponse

ABC -- T1
-- -- --

Establish ABC T2 -- -- -- 1

 Establishmen
tReject

ABC -- T2 KeepAlive
Interval

 Invalid KeepAlive
Interval

 1

 Invalid session ID 7.2.5.5
For example – Session ID does not follow UUID or GUID semantics as per RFC 4122 and Establishment message is
sent with Session ID as all zeros then it will be rejected.

Message
Received

Message
Sent

Session ID Timestamp Request
Timestamp

Code Reason Keep Alive
Interval

Negotiate ABC T1 -- -- -- --

 Negotiation
Response

ABC -- T1
-- -- --

Establish 000 T2 -- -- -- 10

 Establish
mentReject

000 -- T2
Unspecified

 Invalid Session ID
Format

 10

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 42 of 60

 Invalid request timestamp 7.2.5.6
For example – Timestamp follows Unix Epoch semantics and is to be sent with nanosecond level precision but
Establishment message is sent with Timestamp as Unix Epoch but expressed as number of seconds then it will be
rejected.
Message
Received

Message
Sent

Session ID Timestamp Request
Timestamp

Code Reason Keep Alive
Interval

Negotiate ABC T1 -- -- -- --

 Negotiation
Response

ABC -- T1
-- -- --

Establish ABC 86400 -- -- -- 10

 Establish
mentReject

ABC -- 86400
Unspecified

 Invalid Timestamp
Format

 10

 Bad credentials 7.2.5.7
For example – Valid Credentials are 123 but Establishment message is sent with Credentials as 456 then it will be
rejected.
Message
Received

Message
Sent

Session ID Timestamp Request
Timestamp

Code Reason Credentials

Negotiate ABC T1 -- -- -- 123

 NegotiationR
esponse

ABC -- T1
-- -- --

Establish ABC T2 -- -- -- 456

 Establishmen
tReject

ABC -- T2 Bad
Credentials

 Invalid Trader ID --

 Mismatch of SessionID/RequestTimestamp 7.2.5.8
For example – the session identifier and the request timestamp in the EstablishmentAck do not match with the
Establishment message then the acknowledgment MUST be ignored and an internal alert may be generated.
Message
Received

Message
Sent

Session ID Timestamp Request
Timestamp

Client Flow Keep Alive
Interval

Next
SeqNo

Server Flow

Negotiate ABC T1 -- Idempotent -- -- --

 Negotiation
Response

ABC -- T1
-- -- -- Recoverable

Establish ABC T2 -- -- 10 -- --

 Establish
mentAck

DEF -- T3
--

 10 1 --

<Ignore EstablishmentAck message since it contains incorrect Session ID and/or RequestTimestamp and Generate Internal
Alert and Possibly Retry>

Establish ABC T4 -- -- 10 -- --

<New Establish message should contain same Session ID>

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 43 of 60

 EstablishmentAck or Reject Not Received 7.2.5.9
For example – the Establish message is neither accepted nor rejected and one KeepAliveInterval has lapsed then
an internal alert may be generated followed by a new Establish message.
Message
Received

Message
Sent

Session ID Timestamp Request
Timestamp

Client Flow Server Flow Credentials KeepAliveInter
val

Negotiate ABC T1 -- Idempotent -- 123

 Negotiation
Response

ABC -- T1
--

 Recoverable --

Establish ABC T2 -- -- -- -- 10

<One KeepAliveInterval has lapsed without any response>

Establish ABC T3 -- -- -- -- 10

<New Establish message should contain same Session ID>

7.3 Unbinding

 Ungraceful termination (time out) 7.3.1

When the KeepAliveInterval has expired and no keep alive message is received then the session is terminated
ungracefully and will need to be re-established. The transport level connection is still open (TCP socket) therefore
Negotiation is not required. Termination due to error does not require the sender to wait for corresponding
Terminate response from counterparty.
Message
Received

Message
Sent

Session
ID

Timestamp Request
Timestamp

Client
Flow

 Keep Alive
Interval

 Code Reason

Negotiate ABC T1 -- Idempote
nt

 -- -- --

 Negotiation
Response

ABC -- T1
-- -- -- --

Establish ABC T2 -- -- 10 -- --

 Establish
mentAck

ABC -- T2
--

 10 -- --

<Time Interval Greater Than Keep Alive Interval Has Lapsed Without Any Message Being Received>

 Terminate ABC -- --
--

-- Timed
Out

 Keep Alive
Interval Has
Lapsed

Establish ABC T3 -- -- 10 -- --

 Establish
mentAck

ABC -- T3
--

 10 -- --

<New Establish message should be sent with same Session ID>

 Ungraceful termination (sequence message received with lower 7.3.2
sequence number)

The session could also be deliberately terminated due to Sequence message received with lower than expected
sequence number and then it will need to be re-established. The transport level connection is still open (TCP
socket) therefore Negotiation is not required. Termination due to error does not require the sender to wait for
corresponding Terminate response from counterparty.

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 44 of 60

Message
Received

Message Sent Session ID Timestamp Request
Timestamp

Next
SeqNo

Implicit
SeqNo

 Client Flow Server Flow Code Reason

Negotiate ABC T1 -- -- --

Idempotent

-- -- --

 Negotiation
Response

ABC -- T1 --
-- Recoverable -- --

Establish ABC T2 -- 200 -- -- -- -- --

 Establish
mentAck

ABC -- T2 1000
--

 -- -- -- --

Sequence -- -- -- 100
--

 -- -- -- --

 Terminate ABC -- -- --
--

 -- -- Unspecifi
ed Error

 Invalid
NextSeqNo

Establish ABC T4 -- 200
--

Idempotent

-- -- --

 Establish
mentAck

ABC -- T4 1001
--

 -- Recoverable -- --

<New Establish message should be sent with same Session ID>

 Ungraceful termination (establishment ack received with lower 7.3.3
sequence number)

The session could also be deliberately terminated due to EstablishmentAck message received with lower than
expected sequence number and then it will need to be re-established. The transport level connection is still open
(TCP socket) therefore Negotiation is not required. Termination due to error does not require the sender to wait
for corresponding Terminate response from counterparty.
Message
Received

Message Sent Session ID Timestamp Request
Timestamp

Next
SeqNo

Implicit
SeqNo

 Client Flow Server Flow Code Reason

Negotiate ABC T1 -- -- --

Idempotent

-- -- --

 Negotiation
Response

ABC -- T1 --
-- Recoverable -- --

Establish ABC T2 -- 200 -- -- -- -- --

 Establish
mentAck

ABC -- T2 1000
--

 -- -- -- --

Sequence -- -- -- 100
--

 -- -- -- --

 Terminate ABC -- -- --
--

 -- -- Unspecifi
ed Error

 Invalid
NextSeqNo

Establish ABC T4 -- 200
--

Idempotent

-- -- --

 Establish
mentAck

ABC -- T4 1001
--

 -- Recoverable -- --

<New Establish message could be sent with same Session ID>

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 45 of 60

 Graceful Termination 7.3.4

Graceful termination is possible when there are no more messages to be sent for the time being and the TCP
socket connection could be disconnected for now. This allows the sender to re-establish connectivity with the
same session ID as before since the session was terminated without finalization (FinishedSending was not used to
indicate logical end of flow). Graceful termination (not due to error) does require the sender to wait for
corresponding Terminate response from counterparty before disconnecting TCP socket connection. The receiver
should not attempt to initiate TCP socket disconnection since the sender will do that upon receiving the response.
Message
Received

Message Sent Session ID Timestamp Request
Timestamp

Next
SeqNo

Implicit
SeqNo

 Client Flow Server Flow Code Reason

Negotiate ABC T1 -- -- --

Idempotent

-- -- --

 Negotiation
Response

ABC -- T1 --
-- Recoverable -- --

Establish ABC T2 -- 200 -- -- -- -- --

 Establish
mentAck

ABC -- T2 1000
--

 -- -- -- --

Sequence -- -- -- 201
--

 -- -- -- --

Terminate ABC -- -- --
--

-- -- Finished --

 Terminate ABC -- -- --
--

 -- -- Finished --

<TCP socket connection is disconnected by sender>

Establish ABC T4 -- 200
--

Idempotent

-- -- --

 Establish
mentAck

ABC -- T4 1001
--

 -- Recoverable -- --

<New Establish message could be sent with same Session ID>

 Disconnection 7.3.5

When the transport level session itself (TCP socket) has been disconnected then the session needs to be
Negotiated and Established.
Message
Received

Message
Sent

Session
ID (UUID)

Timestamp Request
Timestamp

Client Flow Keep Alive
Interval

 Server
Flow

 Reason

Negotiate ABC T1 -- Idempotent -- -- --

 Negotiation
Response

ABC -- T1
--

 --
Recovera
ble

 --

Establish ABC T2 -- -- 10 -- --

 Establish
mentAck

ABC -- T2
--

 10 -- --

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 46 of 60

<TCP socket connection is disconnected>

Negotiate DEF T3 -- Idempotent -- -- --

 Negotiation
Response

DEF -- T3
--

 --
Recovera
ble

 --

Establish DEF T4 -- -- 10 -- --

 Establish
mentAck

DEF -- T4
--

 10 -- --

<New Negotiate message requires new Session ID>

7.4 Transferring

 Sequence 7.4.1

Over TCP – a Client could send a Sequence message at the very beginning of the session upon establishment. The
counterparty would not use it initially as it is provided in the EstablishmentAck message.

Message
Received

Message Sent Session ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

Client Flow Server Flow Implicit
SeqNo

Negotiate ABC T1 -- -- Idempotent --

 Negotiation Response ABC -- T1 -- Recoverable --

Establish ABC T2 -- 100 --

 EstablishmentAck ABC -- T2 1000 --

Sequence -- -- -- 100 --

NewOrder
Single

 ABC T3 --
-- -- -- 100

 ExecutionReport ABC T4 -- -- -- -- 1000

Sequence message is applicable for idempotent and recoverable flows and if received for unsequenced
and none flows then issue terminate message to sender since it is a protocol violation.

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 47 of 60

 Sequence (Higher sequence number) 7.4.1.1
The Sequence, Context, EstablishmentAck and Retransmission messages are sequence forming. They turn the
message flow into a sequenced mode since they have the next implicit sequence number. Any other Session
message makes the flow leave the sequenced mode. If the message is sequence forming then the flow does not
leave the sequenced mode, but the message potentially resets the sequence numbering.
For example – here the second Sequence message is increasing the NextSeqNo even though it was sent as a keep
alive message within a sequenced flow.

Message
Received

Message Sent Session ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

 Implicit
SeqNo

Client
Flow

Server
Flow

 From
SeqNo

 Count

Negotiate ABC T1 -- -- -- Idempote
nt

-- -- --

 Negotiation
Response

ABC -- T1
-- -- -- Recoverab

le
 -- --

Establish ABC T2 -- 100 -- -- -- -- --

 Establishment
Ack

ABC -- T2
1000 -- -- -- -- --

Sequence -- -- -- 100 -- -- -- -- --

NewOrder
Single

 ABC T3 --
-- 100 -- -- -- --

 Execution
Report

ABC T4 --
-- 1000 -- -- -- --

Sequence -- -- -- 200 -- -- -- -- --

NewOrder
Single

 ABC T5 --
-- 200 -- -- -- --

 NotApplied -- -- -- -- -- -- -- 101 100

 Execution
Report

ABC T6 --
-- 1001 -- -- -- --

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 48 of 60

 Sequence (Lower sequence number) 7.4.1.2
This is an example of a Sequence message being sent with a lower than expected NextSeqNo value even though it
was sent as a keep alive message within a sequenced flow.
Message
Received

Message Sent Session ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

 Implicit
SeqNo

Client
Flow

Server
Flow

 Code Reason

Negotiate ABC T1 -- -- -- Idempote
nt

-- -- --

 Negotiation
Response

ABC -- T1
-- -- -- Recovera

ble
 -- --

Establish ABC T2 -- 100 -- -- -- -- --

 EstablishmentAck ABC -- T2 1000 -- -- -- -- --

Sequence -- -- -- 100 -- -- -- -- --

NewOrder
Single

 ABC T3 --
-- 100 -- -- -- --

 ExecutionReport ABC T4 -- -- 1000 -- -- -- --

Sequence -- -- -- 50 -- -- -- -- --

 Terminate ABC -- --
--

 -- -- --
Unspecifi
ed Error

 Invalid
NextSe
qNo

 Sequence (heartbeat) 7.4.1.3
The Sequence message could also be used as a heartbeat for idempotent and recoverable flows.
Message
Received

Message Sent Session ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

Client Flow Server Flow Keep Alive
Interval

 Implicit
SeqNo

Negotiate ABC T1 -- -- Idempotent -- -- --

 Negotiation
Response

ABC -- T1
-- Recoverable -- --

Establish ABC T2 -- 100 -- -- 10 --

 EstablishmentAck ABC -- T2 1000 -- -- 10 --

Sequence -- -- (T2+10) -- 100 -- -- -- --

 Sequence -- -- (T2+11) -- 1000 -- -- -- --

Sequence -- -- (T2+20) -- 100 -- -- -- --

 Sequence -- -- (T2+21) -- 1000 -- -- -- --

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 49 of 60

 Context (Multiplexing Session ID’s) 7.4.2

The Context message is needed to convey that a context switch is taking place from one Session ID (ABC) to
another (DEF) over the same transport. This way – two sessions (ABC & DEF) could be multiplexed over one TCP
connection and there is a one to one relation between the two such that they need to be negotiated and
established independently. They will have independent sequence numbering and the value of NextSeqNo in each
EstablishmentAck response will depend on where the particular session is sequence wise. There is no need to send
a Context message before an application message if the previous application message was destined for the same
session. A Context message has to be sent before an application message if the previous application message was
destined for another session. This is an example where a Context message is necessary since the previous message
was for a different session.

Message
Received

Message Sent Session ID
(UUID)

Timestamp Request
Timestamp

Next Seq
No

 Implicit
SeqNo

Negotiate ABC T1 -- -- --

 NegotiationResponse ABC -- T1 -- --

Establish ABC T2 -- -- --

 EstablishmentAck ABC -- T2 1000 --

Negotiate DEF T3 -- -- --

 NegotiationResponse DEF -- T3 -- --

Establish DEF T4 -- -- --

 EstablishmentAck DEF -- T4 2000 --

Context ABC -- -- 100 --

NewOrder
Single

 ABC T5 --
-- 100

 Context ABC -- -- 1000 --

 ExecutionReport ABC T6 -- -- 1000

Context DEF -- -- 200 --

NewOrder
Single

 DEF T7 --
-- 200

 Context DEF -- -- 2000 --

 ExecutionReport DEF T8 -- -- 2000

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 50 of 60

 Context flow using sequence 7.4.2.1
This is an example where a Context message is not necessary since the previous message was for the same session
and a Sequence message will suffice.
Message
Received

Message Sent Session ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

 Implicit
SeqNo

Negotiate ABC T1 -- -- --

 NegotiationResponse ABC -- T1 -- --

Establish ABC T2 -- -- --

 EstablishmentAck ABC -- T2 1000 --

Sequence -- -- -- 100 --

NewOrder
Single

 ABC T3 --
-- 100

 ExecutionReport ABC T4 -- -- 1000

Negotiate DEF T5 -- -- --

 NegotiationResponse DEF -- T5 -- --

Establish DEF T6 -- -- --

 EstablishmentAck DEF -- T6 2000 --

Sequence -- -- -- 200 --

NewOrder
Single

 DEF T7 --
-- 200

 ExecutionReport DEF T8 -- -- 2000

 Unsequenced Heartbeat 7.4.3

This message is used to keep alive the session on unsequenced and none flows.
Message
Received

Message Sent Session ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

Client Flow Server Flow Keep Alive
Interval

 Implicit
SeqNo

Negotiate ABC T1 -- -- Unsequenc
ed

-- -- --

 Negotiation
Response

ABC -- T1
-- Recoverable -- --

Establish ABC T2 -- 100 -- -- 10 --

 EstablishmentAck ABC -- T2 1000 -- -- 10 --

Unsequenced
Heartbeat

 -- -- (T2+10) --
--

-- -- -- --

Unsequenced
Heartbeat -- -- (T2+20) --

-- -- -- -- --

Unsequenced
Heartbeat -- -- (T2+30) --

-- -- -- -- --

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 51 of 60

 Retransmission Request 7.4.4

For recoverable flows, a Retransmission Request could be issued to recover gap in sequence numbers
Message
Received

Message Sent Session ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

 Implicit
SeqNo

Client
Flow

Server
Flow

 From
SeqNo

 Count

Negotiate ABC T1 -- -- -- Idempote
nt

-- -- --

 Negotiation
Response

ABC -- T1
-- -- -- Recoverab

le
 -- --

Establish ABC T2 -- 100 -- -- -- -- --

 Establishment
Ack

ABC -- T2
1000 -- -- -- -- --

 Sequence -- -- -- 1000 -- -- -- -- --

 Execution
Report

ABC T3 --
-- 1100 -- -- -- --

Retransmi
ssionRequ
est

 ABC T4 --
--

 -- -- -- 1000 100

 Retransmission ABC -- T4 1000 -- -- -- -- 100

<100 messages between 1000 to 1099 are replayed and message number 1100 is queued for processing after Retransmisison is satisfied>

Retransmission message is not applicable for idempotent, unsequenced and none flows and if received
for these flows then issue terminate message to sender since it is a protocol violation.

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 52 of 60

 Retransmission (Concurrent) 7.4.4.1
More than one RetransmissionRequest is not allowed at a time and subsequent in-flight requests will lead to
session termination.
Message
Received

Message Sent Session ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

 Implicit
SeqNo

Client
Flow

Server
Flow

 From
SeqNo

 Count

Negotiate ABC T1 -- -- -- Idempote
nt

-- -- --

 Negotiation
Response

ABC -- T1
-- -- -- Recoverab

le
 -- --

Establish ABC T2 -- 100 -- -- -- -- --

 Establishment
Ack

ABC -- T2
1000 -- -- -- -- --

 Sequence -- -- -- 1000 -- -- -- -- --

 Execution
Report

ABC T3 --
-- 1100 -- -- -- --

Retransmi
ssionRequ
est

 ABC T4 --
--

 -- -- -- 1000 100

 Retransmission ABC -- T4 1000 -- -- -- -- 100

<50 messages between 1000 and 1099 are replayed>

Retransmi
ssionRequ
est

 ABC T5 --
--

 -- -- -- 1050 50

 Terminate ABC -- -- -- -- -- -- -- --

<Session terminated with TerminationCode=ReRequestInProgress>

 Retransmission (Interleaving) 7.4.4.2
While responding back to a RetransmissionRequest it is possible that the sender could interleave real time original
messages with duplicate retransmission responses. This interleaving will happen between both flows in ranges
which could be the chunk of messages which can fit into a single datagram or packet. Each batch of duplicate
replayed messages will be preceded by a Retransmission message in the same packet and each batch of real time
original messages will be preceded by a Sequence message in the same packet.

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 53 of 60

Message
Received

Message Sent Session ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

 Implicit
SeqNo

Client
Flow

Server
Flow

 From
SeqNo

 Count

Retransmi
ssionRequ
est

 ABC T1 --
--

 -- -- -- 1000 100

 Retransmission ABC -- T1 1000 -- -- -- -- 50

<50 duplicate messages between 1000 and 1049 are replayed in first packet which includes Retransmission message>

<Real time messages between 2000 and 2049 are queued by the sender at this time>

 Sequence -- -- -- 2000 -- -- -- -- --

<50 original real time messages between 2000 and 2049 are sent in second packet which includes Sequence message>

<Duplicate messages between 1050 and 1099 are queued by sender at this time>

 Retransmission ABC -- T1 1050 -- -- -- -- 50

<Second batch of 50 duplicate messages between 1050 and 1099 are send in third packet which includes Retransmission message>

 Retransmission Reject 7.4.5

 Invalid FromSeqNo 7.4.5.1
RetransmissionRequest could be rejected if the messages being requested (FromSeqNo) belong to an
invalid sequence range i.e. greater than last sent sequence number from sender.
Message
Received

Message Sent Session ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

 Implicit
SeqNo

Code Reason From
SeqNo

 Count

Negotiate ABC T1 -- -- -- Idempote
nt

-- -- --

 Negotiation
Response

ABC -- T1
-- -- -- Recoverab

le
 -- --

Establish ABC T2 -- 100 -- -- -- -- --

 Establishment
Ack

ABC -- T2
1000 -- -- -- -- --

 Sequence -- -- -- 1000 -- -- -- -- --

Retransmi
ssionRequ
est

 ABC T3 --
--

 -- -- -- 2000 100

 RetransmitReje
ct

ABC -- T3
--

 -- OutOfRan
ge

Invalid
FromSeqN
o

 -- --

<Here FromSeqNo is greater than last value of NextSeqNo from sender>

 Retransmission Reject (OutOfRange) 7.4.5.2
RetransmissionRequest could be rejected if the messages being requested (FromSeqNo + Count) belong
to an invalid sequence range i.e. greater than last sent sequence number from sender.

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 54 of 60

Message
Received

Message Sent Session ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

 Implicit
SeqNo

Code Reason From
SeqNo

 Count

Negotiate ABC T1 -- -- -- Idempote
nt

-- -- --

 Negotiation
Response

ABC -- T1
-- -- -- Recoverab

le
 -- --

Establish ABC T2 -- 100 -- -- -- -- --

 Establishment
Ack

ABC -- T2
1000 -- -- -- -- --

 Sequence -- -- -- 1000 -- -- -- -- --

Retransmi
ssionRequ
est

 ABC T3 --
--

 -- -- -- 900 175

 RetransmitReje
ct

ABC -- T3
--

 -- OutOfRan
ge

Invalid
Range

 -- --

<Here FromSeqNo + Count is greater than last value of NextSeqNo from sender>

 Retransmission Reject (Invalid Session ID) 7.4.5.3
RetransmissionRequest could be rejected if the messages are being requested with a different session ID
such that it is unknown or not authorized.
Message
Received

Message Sent Session ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

 Implicit
SeqNo

Code Reason From
SeqNo

 Count

Negotiate ABC T1 -- -- -- Idempote
nt

-- -- --

 Negotiation
Response

ABC -- T1
-- -- -- Recoverab

le
 -- --

Establish ABC T2 -- 100 -- -- -- -- --

 Establishment
Ack

ABC -- T2
1000 -- -- -- -- --

 Sequence -- -- -- 1000 -- -- -- -- --

Retransmi
ssionRequ
est

 DEF T3 --
--

 -- -- -- 850 50

 RetransmitReje
ct

DEF -- T3
--

 -- Invalid
Session

Unknown
Session ID

 -- --

<Here DEF is an unknown session ID since it has not negotiated and established a session>

 Retransmission Reject (Request Limit Exceeded) 7.4.5.4
RetransmissionRequest could be rejected if the messages being requested exceed the limit for allowable
count in each request.

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 55 of 60

Message
Received

Message Sent Session ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

 Implicit
SeqNo

Code Reason From
SeqNo

 Count

Negotiate ABC T1 -- -- -- Idempote
nt

-- -- --

 Negotiation
Response

ABC -- T1
-- -- -- Recoverab

le
 -- --

Establish ABC T2 -- 100 -- -- -- -- --

 Establishment
Ack

ABC -- T2
1000 -- -- -- -- --

 Sequence -- -- -- 1000 -- -- -- -- --

Retransmi
ssionRequ
est

 ABC T3 --
--

 -- -- -- 1 999

 RetransmitReje
ct

ABC -- T3
--

 -- RequestLi
mitExceed
ed

Count
Exceeds
500

 -- --

<Here the RetransmisisonRequest was rejected due to the count of messages requested bring greater than what is supported by the sender>

 Retransmission Reject (Retrasmission Out of Bounds) 7.4.5.5
RetransmissionRequest asking to replay messages which are no longer available (for example older than three
days) could also be rejected.
Message
Received

Message Sent Session ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

Implicit
SeqNo

 From
SeqNo

Count Code Reason

Negotiate ABC T1 -- -- -- -- -- -- --

 Negotiation
Response

ABC -- T1 --
-- -- -- -- --

Establish ABC T2 -- 200 -- -- -- -- --

 Establish
mentAck

ABC -- T2 1000
--

 -- -- -- --

Retransmit
Request

 ABC T3 -- --
--

 1 175 -- --

 RetransmitRe
ject

ABC -- T3 --
--

 -- -- ReRequest
OutOfBoun
ds

 Messages
No Longer
Available

<Here the messages being requested (1-175) were older than 72 hours>

7.5 Finalizing

 Finished Sending & Finished Receiving 7.5.1

The FinishedSending message is used by the initiator to inform the acceptor that the logical flow of
messages has reached its end i.e. the FIXP session is in the process of being wound down and gracefully
terminated, for example at the end of the day or at the end of the week etc. Once the acceptor
responds back with a FinishedReceiving confirmation message then the session could be half-closed i.e.
no more messages will be sent from the initiator but the acceptor could continue to send messages until

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 56 of 60

it does not send a FinishedSending message itself to the counterparty to indicate that it too has reached
the end of its logical flow and it has no more messages to send.
The FinishedReceiving message is used to confirm that the FinishedSending message has been
successfully received and acknowledged and that the FIXP session could be terminated once both
counterparties have sent and received a FinishedReceiving message. The initiator is then expected to re-
negotiate the session with a new SessionID.

Message
Received

Message
Sent

Session ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

LastSe
qNo

ClientFlo
w

ServerFlo
w

Code Reason

Negotiate ABC T1 -- -- -- Idempote
nt

-- -- --

 Negotiation
Response

ABC -- T1 --
-- -- Recoverab

le
-- --

Establish ABC T2 -- 200 -- --- -- -- --

 Establish
mentAck

ABC -- T2 1000
--

-- -- -- --

NewOrderS
ingle

 ABC T3 -- --
--

-- -- -- --

 EecutionRepo
rt

ABC -- T3 --
--

-- -- -- --

FinishedSen
ding

 ABC -- -- --
201

-- -- -- --

 FinishedRecei
ving

ABC -- -- --
--

-- -- -- --

 FinishedSendi
ng

ABC -- -- --
1001

-- -- -- --

FinishedRec
eiving

 ABC -- -- --
--

-- -- -- --

Terminate ABC -- -- --
--

-- -- Finished --

 Terminate ABC -- -- --
--

-- -- Finished --

Here the initiator has sent the Terminate message but either counterparty could have sent it since both have sent and received a
FinishedReceiving message. The TCP socket connection is disconnected by the initiator upon receipt of the corresponding Terminate ack.

Negotiate DEF T4 -- --
--

-- -- -- --

 NegotiationR
esponse

DEF -- T4 --
--

-- -- -- --

 Finished Sending & No Response Received 7.5.2

If the initiator has sent a FinishedSending message and does not receive a corresponding
FinishedReceiving response from the counterparty within one KeepAliveInterval then it is supposed to
keep sending the FinishedSending message until it hears back at the rate of one per KeepAliveInterval
i.e. use it as a proxy for the Heartbeat message.
Message
Received

Message Sent Session ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

LastSe
qNo

Code Reason

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 57 of 60

FinishedSen
ding

 ABC -- -- --
201

-- --

One <KeepAliveInterval> lapses without any corresponding FinishedReceived response from
the counterparty

FinishedSen
ding

 ABC -- -- --
201

-- --

One <KeepAliveInterval> lapses without any corresponding FinishedReceived response from
the counterparty

FinishedSen
ding

 ABC -- -- --
201

-- --

 FinishedRecei
ving

ABC -- -- --
--

Even though multiple <FinishedSending> messages have been sent, a single <FinishedReceiving> response is
sufficient to assume that the session could be terminated i.e. there is no need to wait for separate
<FinishedReceving> responses for each <FinishedSending> request sent and the initiator could now terminate the
session

 Finished Sending & Recoverable Flow 7.5.3

Upon receiving the FinishedSending message, if the counterparty detects a gap in the sequence by
scrutinizing the <LastSeqNo> field (which is literal and not implied) then it will attempt to recover this
gap in a recoverable flow before responding back with a corresponding FinishedReceiving confirmation
message.
Message
Received

Message
Sent

Session ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

LastSe
qNo

FromSeqN
o

Count Code

FinishedSen
ding

 ABC -- -- --
201

-- -- --

Last implicit sequence number or value of <NextSeqNo> from ABC is 198 therefore acceptor issues a
<RetransmissionRequest> to recover sequence gap of four messages (198-201) assuming that ABC was using
recoverable flow

--

 Retransmissio
nRequest

ABC T1 -- --
--

198 4 --

Retransmit ABC -- T1 198
--

-- 4 --

Initiator replays messages in requested sequence range between 198-201 and acceptor processes these messages and
responds back with corresponding acknowledgements. The initiator should be ready to process these acknowledgements from
acceptor in response to retransmission even after sending a <FinishedSending> message

 FinishedRecei
ving

ABC -- -- --
--

-- -- --

Since the acceptor’s retransmission request has been satisfied, it then proceeds to reply back with a
<FinishedReceiving> message so that the initiator’s logical flow of messages could cease.

--

 Finished Sending & Termination 7.5.4

The party which wishes to cease logical flow of messages from its connection at the end of the day, end
of the week or upon market close should wait until the other counterparty is also ready to do the same
before attempting to terminate the connection otherwise this will be regarded as a protocol violation

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 58 of 60

and will result in an ungraceful termination of the connection by the other party which has not yet had
the opportunity to cease logical flow of its own messages.
Message
Received

Message
Sent

Session ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

LastSe
qNo

FromSeqN
o

Count Code Reason

FinishedSen
ding

 ABC -- -- --
201

-- -- -- --

 FinishedRecei
ving

ABC -- -- --
--

-- -- -- --

Terminate ABC -- -- --
--

-- -- Finished --

 Terminate ABC -- -- --

--

-- -- Unspecifie
d Error

Logical
Flow
Interrupte
d

 Finished Sending & Further Message Flow 7.5.5

The party which wishes to cease logical flow of messages from its connection at the end of the day, end
of the week or upon market close should not send any other message after the first FinishedSending
message has been sent. The only exception to this rule is the Retransmission message and replayed
messages (in response to RetransmissionRequest from counterparty if it detects a gap based on the
value of LastSeqNo). If it sends any other message either (FIXP or application) then it will lead to
ungraceful termination by the other counterparty since this is a protocol violation. This should be
avoided at all costs since if the other counterparty is trying to recover a gap in sequence then that will
be aborted.
Message
Received

Message
Sent

Session ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

LastSe
qNo

FromSeqN
o

Count Code Reason

FinishedSen
ding

 ABC -- -- --
201

-- -- -- --

 FinishedRecei
ving

ABC -- -- --
--

-- -- -- --

Sequence ABC -- -- 202
--

-- -- -- --

 Terminate ABC -- -- --

--

-- -- Unspecifie
d Error

Logical
Flow
Cannot
Resume
After
Finalizatio
n

Here a Sequence message was sent after the counterparty responded back with a Finished Receiving message and it led to an ungraceful
termination

Message
Received

Message Sent Session ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

LastSeq
No

FromSeqN
o

Count Code Reason

FinishedSen
ding

 ABC -- -- --
201

-- -- -- --

Sequence ABC -- -- 202
--

-- -- -- --

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 59 of 60

 Terminate ABC -- -- --

--

-- -- Unspecifie
d Error

Logical
Flow
Cannot
Resume
After
Finalizatio
n

Here a Sequence message was sent before the counterparty could respond back with a Finished Receiving message and it too led to an
ungraceful termination

 Finished Sending & Half-Close 7.5.6

Once one of the two parties has ceased logical flow of messages from its connection at the end of the
day, end of the week or upon market close then it should still be ready and able to accept messages
from the other counterparty till the time that the counterparty itself does not cease logical flow of
messages from its own connection. However this should not lead to any corresponding output back
from the connection which has been half-closed (with the exception of Retransmission) since that would
be a protocol violation and lead to ungraceful termination.
Message
Received

Message
Sent

Session ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

LastSe
qNo

ClientFlo
w

ServerFlo
w

Code Reason

FinishedSen
ding

 ABC -- -- --
201

-- -- -- --

 FinishedRecei
ving

ABC -- -- --
--

-- -- -- --

 EecutionRepo
rt

ABC -- T5 --
--

-- -- -- --

 EecutionRepo
rt

ABC -- T6 --
--

-- -- -- --

Retransmis
sionReques
t

 ABC T7 -- --
--

-- -- -- --

 Terminate ABC -- -- --

--

-- -- FUnspecifi
ed Error

-- Logical
Flow
Cannot
Resume
After
Finalizatio
n

Here the initiator has sent a RetransmissionRequest message after ceasing logical flow of messages from its own connection while
continuing to accept message flow from acceptor and this will result in an ungraceful termination since the initiator can only respond
back to a RetransmisisonRequest but cannot initiate one of its own after half-closing its connection.

FIX Performance Session Layer
FIXP-RC2 September 2015

 Page 60 of 60

8 Appendix B – FIXP Rules of Engagement
This checklist is an aid to specifying a full protocol stack to be used for communication between
counterparties

Stack layer Client Server

Application Layer

Application level recovery
supported?

FIX version
Service pack
Extension packs

Presentation Layer

Message encoding
Version
Schema/templates

 Simple Binary Encoding
 GPB
 ASN.1
 FIX tag-value

Framing  Simple Open Framing Header

 None

Session Layer
Supported flow types  Recoverable

 Idempotent
 Unsequenced
 None

 Recoverable
 Idempotent
 Unsequenced
 None

Security protocols
Authentication

Transport Layer
Transports supported

 TCP
 UDP

Other network protocols

