

FIX Performance Session Layer Release Candidate 2 Technical Specification

September 10, 2015

For Global Technical Committee Governance Internal Use O
--

Submission Date	September 10, 2015	Control Number	
Submission Status	Submitted	Ratified Date	
Primary Contact Person	Don Mendelson	Release Identifier	

DISCLAIMER

THE INFORMATION CONTAINED HEREIN AND THE FINANCIAL INFORMATION EXCHANGE PROTOCOL (COLLECTIVELY, THE "FIX PROTOCOL") ARE PROVIDED "AS IS" AND NO PERSON OR ENTITY ASSOCIATED WITH THE FIX PROTOCOL MAKES ANY REPRESENTATION OR WARRANTY, EXPRESS OR IMPLIED, AS TO THE FIX PROTOCOL (OR THE RESULTS TO BE OBTAINED BY THE USE THEREOF) OR ANY OTHER MATTER AND EACH SUCH PERSON AND ENTITY SPECIFICALLY DISCLAIMS ANY WARRANTY OF ORIGINALITY, ACCURACY, COMPLETENESS, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. SUCH PERSONS AND ENTITIES DO NOT WARRANT THAT THE FIX PROTOCOL WILL CONFORM TO ANY DESCRIPTION THEREOF OR BE FREE OF ERRORS. THE ENTIRE RISK OF ANY USE OF THE FIX PROTOCOL IS ASSUMED BY THE USER.

NO PERSON OR ENTITY ASSOCIATED WITH THE FIX PROTOCOL SHALL HAVE ANY LIABILITY FOR DAMAGES OF ANY KIND ARISING IN ANY MANNER OUT OF OR IN CONNECTION WITH ANY USER'S USE OF (OR ANY INABILITY TO USE) THE FIX PROTOCOL, WHETHER DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL (INCLUDING, WITHOUT LIMITATION, LOSS OF DATA, LOSS OF USE, CLAIMS OF THIRD PARTIES OR LOST PROFITS OR REVENUES OR OTHER ECONOMIC LOSS), WHETHER IN TORT (INCLUDING NEGLIGENCE AND STRICT LIABILITY), CONTRACT OR OTHERWISE, WHETHER OR NOT ANY SUCH PERSON OR ENTITY HAS BEEN ADVISED OF, OR OTHERWISE MIGHT HAVE ANTICIPATED THE POSSIBILITY OF, SUCH DAMAGES.

DRAFT OR NOT RATIFIED PROPOSALS (REFER TO PROPOSAL STATUS AND/OR SUBMISSION STATUS ON COVER PAGE) ARE PROVIDED "AS IS" TO INTERESTED PARTIES FOR DISCUSSION ONLY. PARTIES THAT CHOOSE TO IMPLEMENT THIS DRAFT PROPOSAL DO SO AT THEIR OWN RISK. IT IS A DRAFT DOCUMENT AND MAY BE UPDATED, REPLACED, OR MADE OBSOLETE BY OTHER DOCUMENTS AT ANY TIME. THE FPL GLOBAL TECHNICAL COMMITTEE WILL NOT ALLOW EARLY IMPLEMENTATION TO CONSTRAIN ITS ABILITY TO MAKE CHANGES TO THIS SPECIFICATION PRIOR TO FINAL RELEASE. IT IS INAPPROPRIATE TO USE FPL WORKING DRAFTS AS REFERENCE MATERIAL OR TO CITE THEM AS OTHER THAN "WORKS IN PROGRESS". THE FPL GLOBAL TECHNICAL COMMITTEE WILL ISSUE, UPON COMPLETION OF REVIEW AND RATIFICATION, AN OFFICIAL STATUS ("APPROVED") OF/FOR THE PROPOSAL AND A RELEASE NUMBER.

No proprietary or ownership interest of any kind is granted with respect to the FIX Protocol (or any rights therein).

Copyright 2014-2015 FIX Protocol Limited, all rights reserved.

Table of Contents

DIS	CLAIM	ER	2
Tab	le of C	Contents	3
Tab	le of F	igures	4
Dod	umen	t History	5
1	Intro	duction	6
	1.1	Authors	
	1.2	Relevant and Related Standards	7
	1.3	Intellectual Property Disclosure	8
	1.4	Definitions	
2	Requ	uirements	
	2.1	Business Requirements	9
	2.2	Technical Requirements	9
3	Com	mon Features	11
	3.1	Usage and Naming Conventions	11
	3.2	Data Types	11
	3.3	FIXP Session Messages	11
	3.4	Message Sequencing	12
	3.5	Session Properties	13
4	Point	t-to-Point Session Protocol	15
	4.1	Summary of Messages that Control Lifetime	15
	4.2	Session Initiation and Negotiation	15
	4.3	Session Establishment	17
	4.4	Transport Termination	20
	4.5	Session Heartbeat	22
	4.6	Resynchronization	23
	4.7	Finalizing a Session	27
	4.8	Idempotent Flow	29
5	Mult	icast Session Protocol	32
	5.1	Multicast Session Lifecycle	32
	5.2	Session Heartbeat	33
6	Sumi	mary of Session Messages	34
	6.1	FIXP Session Messages	34
	6.2	Related Application Messages	34
	6.3	Summary of Protocol Violations	35
7	Appe	endix A - Usage Examples (TCP)	36
	7.1	Initialization	36
	7.2	Binding	39
	7.3	Unbinding	43
	7.4	Transferring	46
	7.5	Finalizing	55
8	Appe	endix B – FIXP Rules of Engagement	60

Table of Figures

Figure 1 Session Negotiation Sequence Diagram	17
Figure 2 Session Establishment Sequence Diagram	20
Figure 3 Termination Sequence Diagram - TCP	22
Figure 4 Termination Sequence Diagram - UDP	22
Figure 5 Retransmission Diagram	25
Figure 5 RetransmitReject Diagram	26
Figure 6 Retransmit Violation Diagram	27
Figure 7 Recoverable Session Termination Sequence Diagram	29
Figure 8 Idempotent Flow sequence diagram	31

Document History

Revision	Date	Author	Revision Comments
RC1	2014-10-31		RC1 baseline
RC2	2014-01-16	Don Mendelson CME Group	Enumerate message types but leave template or message identifiers to specific encodings. Adapted Li Zhu's table of session messages for section 4.
	2014-01-29	Don Mendelson CME Group	Clarified a receiver's behavior after it detected a sequence number gap. Also added a section on application layer recovery. Added None flow type for a one-way session. It uses an UnsequencedHeartbeat.
	2014-02-11	Don Mendelson CME Group	Updated description of retransmission responses, added RetransmitReject message. Split spec into separate sections for point-to-point and multicast protocols. Added Topic message.
	2014-03-01	Don Mendelson CME Group	Revised section on retransmission pacing. Added heartbeat section to multicast flow.
	2014-03-05	Don Mendelson CME Group	Added diagrams for retransmission responses.
	2014-03-17	Julio Moneiro BVMF	Added section on out of band recovery.
	2014-03-24	Don Mendelson CME Group	Stated that credentials are only for business entity identification, not as user ID/password for security.
	2015-06-01	Aditya Kapur CME Group	Added TCP specific use cases for initialization, binding, transferring, unbinding and finalizing.
	2014-07-07	Don Mendelson CME Group	Updated Terminate Transport section and sequence diagrams. Added summary of protocol violations.
	2014-07-08	Don Mendelson CME Group	Added definitions for flow and session.
	2014-07-13	Don Mendelson CME Group	Updated diagrams for Terminate to make distinction between TCP and UDP cases.
	2015-07-30	Aditya Kapur CME Group	Removed out of band recovery and deferred it to RC3.
			Made updates to TCP usecases for finalization

1 Introduction

FIX Performance Session Layer (FIXP) is a "lightweight point-to-point protocol" introduced to provide an open industry standard for high performance computing requirements currently encountered by the FIX Community. FIXP is a derived work. The origin and basis for FIXP are the FIX session layer protocols and the designed and implemented by NASDAQOMX, SoupTCP, SoupBinTCP, and UFO (UDP for Orders). Every attempt was made to keep FIXP as close to the functionality and behavior of SoupBinTCP and UFO as possible. Extensions and refactoring were performed as incremental improvements. Every attempt was made to limit the FIXP to establishing and maintaining a communication session between two end points in a reliable manner, regardless of the reliability of the underlying transport.

FIXP features

- Binary protocol
- Very simple lightweight point-to-point session layer for reliable communication.
- Communication protocol independent
- Encoding independent
- Restricted to initiating, maintaining, and reestablishing a session.

The idea to provide an open standard high performance session layer with SoupBinTCP as its source came from two simultaneous sources.

- 1. The BVMF (Brazil) began investigating SoupBinTCP as a lightweight and simple alternative for market data delivery due to issues with Multicast IP infrastructure at member firms. The idea to align packet types to existing FIX message types was created during a meeting prior to the start of the High Performance Working Group.
- Pantor Engineering prototyped a solution for high performance computing that used FAST datatypes (without field operators) carried over a SoupBinTCP session. Anders Furuhed presented the concept at the FIX Nordic event.

1.1 Authors

Name	Affiliation	Contact	Role
Anders Furuhed	Pantor Engineering	anders@pantor.com	Protocol Designer
David Rosenborg	Pantor Engineering	david.rosenborg@pantor.com	Protocol Designer
Rolf Andersson	Pantor Engineering	rolf@pantor.com	Contributor, GTC
			Governance Board
			member
Jim Northey	LaSalle Technology	jimn@lasalletech.com	Editor, Working group
			convener
Julio Monteiro	BVMF Bovespa	jmonteiro@bvmf.com.br	Editor, Working Group
			convener
Aditya Kapur	CME Group, Inc	Aditya.kapur@cmegroup.com	Working Group
			Participant – provided
			document editing and
			input on exchange
			adoption

Don Mendelson	CME Group, Inc.	Don.Mendelson@cmegroup.com	Working Group
			Participant and regular
			contributor
Li Zhu	Shanghai Stock	lzhu@sse.com.cn	Working Group
	Exchange		Participant and regular
			contributor

1.2 Relevant and Related Standards

1.2.1 Sources

These standards were sources for concepts but are non-normative for FIXP.

Reference	Version	Relevance	Normative
UFO (UDP for	Version	Basis for high performance session layer.	No
Orders) NASDAQ	1.0, July		
OMX	3, 2008		
SoupBinTCP	3.00	Basis for high performance session layer.	No
NASDAQ OMX			
FIXT Session	1.1	The previous FIX session layer specification	No
Layer			
Specification			
XMIT	alpha15	High performance session protocol design by Pantor	No
		Engineering	

1.2.2 Related FIX Standards

The FIX Simple Open Framing Header standard governs how messages are delimited and has a specific relationship mentioned in this specification. FIXP interoperates with the other FIX standards at application and presentation layers, but it is not dependent on them. Therefore, they are considered non-normative for FIXP.

Related Standard	Version	Reference location	Relationship	Normative
Simple Open	RC1		Optional usage at	Yes
Framing Header			presentation layer	
FIX message	5.0 SP 2		Presentation and	No
specifications			application layers	
FIX Simple Binary	RC2		Optional usage at	No
Encoding			presentation layer	
Encoding FIX	Draft		Optional usage at	No
Using ASN.1	Standard		presentation layer	
Encoding FIX	RC2		Optional usage at	No
Using GPB			presentation layer	

1.2.3 Dependencies on Other Specifications

FIXP is dependent on several industry standards. Implementations of FIXP must conform to these standards to interoperate. Therefore, they are normative for FIXP. Other protocols may be used by agreement between counterparties.

Related Standard	Version	Reference location	Relationship	Normative
RFC 793	N/A	http://tools.ietf.org/html/rfc793	Uses transport	Yes
Transmission		and related standards		
Control Program				
(TCP)				
RFC 768 User	N/A	http://tools.ietf.org/html/rfc768	Uses transport	Yes
Datagram				
Protocol (UDP)				
RFC4122 A	N/A	http://tools.ietf.org/html/rfc4122	Uses	Yes
Universally				
Unique Identifier				
(UUID) URN				
Namespace				
UTF-8, a	N/A	http://tools.ietf.org/html/rfc3629	Uses encoding	Yes
transformation				
format of ISO				
10646				
Various	N/A		Optional usage at	No
authentication			session layer	
protocols				

1.3 Intellectual Property Disclosure

Related Intellection Property	Type of IP (copyright, patent)	IP Owner	Relationship to proposed standard
Blink http://blinkprotocol.org/spec/BlinkSpec- beta3.pdf	Copyright	Pantor Engineering	
XMIT	Copyright	Pantor Engineering	Basis for design of protocol
Soup, SoupBinTCP, UFO (UDP for Orders), and MoldUDP	Copyright	NASDAQOMX	FIXP is intended to provide functionality equivalent to these protocols.

1.4 Definitions

Term	Definition
Client	Initiator of session.
Credentials	In FIXP, credentials are used only for business entity identification, not
	as a security key.
Flow	A unidirectional stream of messages. Each flow has one producer and
	one or more consumers.
Idempotence	Idempotence means that an operation that is applied multiple times
	does not change the outcome, the result, after the first time
IP MC	IP Multicast
Server	Acceptor of session
Session	A dialog for exchanging application messages between peers.
	An established point-to-point session consists of a pair of flows, one in
	each direction between peers. A multicast session consists of a single
	flow from the producer to multiple consumers.
TCP	Transmission Control Protocol
UDP	User Datagram Protocol

2 Requirements

2.1 Business Requirements

Create an enhanced session protocol that can provide reliable, highly efficient, exchange of messages to support high performance financial messaging, over a variety of transports.

Protocol shall be fit for purpose for current high message rates, low latency environments in financial markets, but should be to every extent possible applicable to other business domains. There is no reason to limit or couple the session layer to the financial markets / trading business domain without extraordinary reason.

Support common message flow types: Recoverable, Unsequenced, Idempotent (operations guaranteed to be applied only once), and None (for a one-way flow of messages).

Protocol shall support asymmetric models, such as market participant to market, in addition to peer-to-peer (symmetric). Allow the communication of messages to multiple receivers (broadcast).

The session protocol does not require or recommend a specific authentication protocol. Counterparties are free to agree on user authentication techniques that fit their needs.

2.2 Technical Requirements

2.2.1 Protocol Layering

This standard endeavors to maintain a clear separation of protocol layers, as expressed by the Open Systems Interconnection model (OSI). The responsibilities of a session layer are establishment, termination and restart procedures and rules for the exchange of application messages.

The protocol shall be independent of message encoding (presentation layer), to provide the maximum utility. Encoding independence applies both to session layer messages specified in this document as well as to application messages. It is simpler if session protocol messages are encoded the same way as application messages, but that is not a requirement of this session protocol.

Users are free to specify message encodings by agreement with counterparties. FIX provides Simple Binary Encoding as well as mappings of FIX to other high performance encodings such as ASN.1, and Google Protocol Buffers. See the list of related standards above. Other recognized encodings may follow in the future.

Of necessity, the session protocol makes some adaptations for transport layer protocols used by the session layer since the capabilities of common transports are quite different. In particular, TCP is connection- and stream-oriented and implements its own reliable delivery mechanisms. Meanwhile, UDP is datagram-oriented and does not guarantee delivery in order. Unfortunately, these characteristics bleed across protocol layers.

2.2.2 Security Mechanisms

FIXP does not specify security features for user authentication or privacy. If such features are desired, it is recommended that proven mechanisms be employed in other protocol layers, such as a secure transport.

2.2.3 Low Overhead

Minimum overhead is added to the messages exchanged between peers, using only the strictly necessary control messages.

By agreement between counterparties, a message framing protocol may be used to delimit messages. This relieves the session layer of application message decoding to determine message boundaries. FIX offers the Simple Open Framing Header standard for framing messages encoded with binary wire formats. See standards references above.

3 Common Features

3.1 Usage and Naming Conventions

All symbolic names for messages and fields in this protocol should follow the same naming convention as other FIX specifications: alphanumeric characters plus underscores without spaces.

3.2 Data Types

Data types are abstract. Actual encoding of FIXP is left to the implementation.

Logical Type	Range	Native Type	Comments
u8	02^8-1		
u16	02^16-1		
u32	02^32-1		
u64	02^64-1		
UUID	RFC 4122 compliant UUID		The requirement is to provide a mechanism that can be selfgenerated and guaranteed free of collision. Implementers are encouraged to adopt version 4.
String	text		UTF-8, length may need to be specified as part of the encoding.
nanotime	Time in nanoseconds	u64	Number of nanoseconds since UNIX epoch
DeltaMillisecs	Number of milliseconds	u32	
Object			Unspecified data content
			Requires some way to determine
			length
Enumeration	A finite set of values		Error and message type identifiers
			are enumerated by symbolic name in
			this specification. Wire format is
			determined by a specific encoding.

3.3 FIXP Session Messages

The FIXP protocol defines several messages that are used to establish and tear down sessions and control sequencing of messages for delivery. Message layouts are specified in this document by symbolic names and the abstract data types listed above. Wire format details are provided by supplements to this specification for each of the supported FIX encodings.

Those supplements also explain how to distinguish session messages from application messages in that specific encoding. FIXP does not require that application messages be in the same encoding as session messages. With the use of Simple Open Framing Header to identify the encoding of the following message, it is even possible to mix wire formats in a session. However, a common encoding for all messages likely permits simpler implementation.

3.3.1 Message Type Identification

Message types are listed in this document as an enumeration of symbolic names. Each FIX encoding tells how message type identifiers are encoded on the wire.

See section 0 below for an enumeration of message types.

3.4 Message Sequencing

3.4.1 Sequence Numbering

Sequence numbering supports ordered delivery and recovery of messages. In FIXP, only application messages are sequenced, not session protocol messages. A Sequence message is used to start a sequenced flow of application messages. Any applications message passed after a Sequence message is implicitly numbered, where the first message after Sequence has the sequence number NextSeqNo.

Sending a Sequence message on an Unsequenced or None (one-way session) flow is a protocol violation.

Sequence					
Field name Type Required Value Description					
MessageType	Enum	Y	Sequence		
NextSeqNo	u64	Υ		The sequence number of the next message	
				after the Sequence message.	

3.4.2 Message framing

FIXP does not require application messages to have a session layer header. Application messages may have their own presentation layer header, depending on encoding. However, application messages may immediately follow Sequence without any intervening session layer prologue.

Optionally, application messages may be delimited by use of the Simple Open Framing Header. This is most useful if session message encoding is different than application message encoding or if a session carries application messages in multiple encodings. The framing header identifies the encoding of the message that follows and gives its overall length. If it is used, then FIXP need not parse application messages to determine length and keep track of message counts in a flow.

3.4.3 Application message sequencing considerations

An application layer defined on top is obviously free to put any required application level sequencing inside messages.

3.4.4 Datagram oriented protocol considerations

Using a datagram oriented transport like UDP, each datagram carrying a sequenced flow, the Sequence message is key to detecting packet loss and packet reordering and must precede any application messages in the packet.

FIXP provides no mechanism for fragmenting messages across datagrams. In other words, each application message must fit within a single datagram on UDP.

3.4.5 Multiplexed session considerations

If sessions are multiplexed over a transport, they are framed independently. When multiplexing, the Context message expands Sequence to also specify the session being sequenced.

If flows are multiplexed over a transport, the transport does not imply the session. Context is used to set the session for the remainder of the current datagram (in a datagram oriented transport) or until a new Context is passed. In a sequenced flow, Context can take the role of Sequence by including NextSeqNo (optimizes away the Sequence that would otherwise follow).

Context				
Field name	Туре	Required	Value	Description
MessageType	Enum	Υ	Context	
SessionId	UUID	Υ		Session Identifier
NextSeqNo	u64	N		The sequence number of the next
				message after the Context message.

3.4.6 Sequence context switches

A change in session context ends the sequence of messages implicitly and the sender must pass a Sequence or Context message again before starting to send sequenced messages. A Sequence message must be sent if the session is not multiplexed and Context must be sent if it is multiplexed. Changes of session context include:

- Interleaving of new, real-time messages and retransmitted messages.
- Switching from one multiplexed session to another when sharing a transport.

3.5 Session Properties

3.5.1 Session Identification

Each session is identified by a unique Session ID encoded as a UUID version 4 (RFC 4122) assigned by the client. The benefit of using an UUID is that it is effortless to allocate in a distributed system. It is also simple and efficient to hash and therefore easy to look up at the endpoints. The downside is a larger size overhead. The identifier however does not appear in the stream except once at the start of each datagram, when using UDP, or when sessions are multiplexed, regardless of the underlying transport that is used. For a non-multiplexed TCP session, the identifier therefore appears only once during the lifetime of the TCP session. A UUID is intended to be unique, not only amongst currently active sessions, but for all time. Reusing a session ID is a protocol violation.

3.5.2 User Identification

Clients that initiate sessions are identified by credentials that are assigned by or known to their counterparties. Credentials identify business entities, such as trading firms.

Credentials should not be used as keys or passwords for authentication, at least not without other supporting security mechanisms. Note that permanent or even rotating passwords are vulnerable to replay attack and thus have little security value.

3.5.3 **Session Lifetime**

A logical session is established between counterparties and lasts until information flows between them are complete. Commonly, such flows are concurrent with daily trading sessions, but no set time limit is imposed by this protocol. Rather, timings for session start and end are set by agreement between counterparties.

A logical session is identified by a session ID, as described above, until its information flows are finalized. After finalization, the old session ID is no longer valid, and messages are no longer recoverable. Counterparties may subsequently start a new session under a different ID.

A logical session is bound to a transport, but a session may outlive a transport connection. The binding to a transport may be terminated intentionally or may be triggered by an error condition. However, a client may reconnect and bind the existing session to the new transport. When re-establishing an existing session, the original session ID continues to be used, and recoverable messages that were lost by disconnection may be recovered.

4 Point-to-Point Session Protocol

A point-to-point session between a client and server is conducted over a bidirectional transport, such as TCP or UDP unicast. Point-to-point protocol is designed for private flows of information between organizations. Optionally, multiple sessions belonging to an organization may be multiplexed over a shared transport.

4.1 Summary of Messages that Control Lifetime

Logical sessions are created by using the Negotiation message. The session ID is sent in the Negotiation message and that ID is used for the lifetime of the session.

After negotiation is complete, the client sends an Establish message to reach the established state. Once established, exchange of application messages may proceed. The established state is concurrent with the lifetime of a connection-oriented transport such as TCP. A client can re-establish a previous session after reconnecting without any further negotiation. Thus, Establish binds the session to the new transport instance.

To signal a counterparty that a disconnection is about to occur, a Terminate message is sent. This unbinds the transport from the session, but it does not end a logical session.

A session that has a recoverable flow may be re-established by sending Establish with the same session ID, and an exchange of messages may continue until all business transactions are finished.

A logical session is ended by sending a FinishedSending message. Thereafter, no more application messages should be sent. The counterparty responds with FinishedReceiving when it has processed the last message, and then the transport is terminated for the final time for that session. Once a flow is finalized and the transport is unbound, a session ID is no longer valid and messages previously sent on that session are no longer recoverable.

4.2 Session Initiation and Negotiation

A negotiation dialog is provided to support a session negotiation protocol that is used for a client to declare what id it will be using, without having to go out of band. There is no concept of resetting a session. Instead of starting over a session, a new session is negotiated - a SessionId in UUID form is cheap.

The optional session negotiation is expected to occur at session initiation.

4.2.1 Flow Type

The negotiation protocol identifies the types of message flow in each direction of a session.

FlowType = Recoverable | Unsequenced | Idempotent | None

From highest to lowest delivery guarantee, the flow types are:

- Recoverable: Guarantees exactly-once message delivery. If gaps are detected, then missed messages are recovered by retransmission.
- **Idempotent**: Guarantees at-most-once delivery. If gaps are detected, the sender is notified, but recovery is under control of the application, if it is done at all.
- **Unsequenced**: Makes no delivery guarantees (best-effort). This choice is appropriate if guarantees are unnecessary or if recovery is provided at the application layer or through a different communication channel.
- **None**: No application messages are delivered in one direction of a session. If ClientFlow is None, then application messages flow only from server to client.

By agreement between counterparties, only certain of these flow types may be supported for a particular service.

4.2.2 Initiate Session Negotiation

Negotiate message is sent from client to server.

	Negotiate					
Field name	Туре	Required	Value	Description		
MessageType	Enum	Υ	Negotiate			
Timestamp	nanotime	Υ		Time of request		
SessionId	UUID	Υ		Session Identifier		
ClientFlow	FlowType	Υ		Type of flow from client to server		
	Enum					
Credentials	Object	N		Optional credentials to identify the		
				session initiator. Format to be		
				determined by agreement between		
				counterparties.		

4.2.3 Accept Session Negotiation

When a session is accepted by a server, it sends a NegotiationResponse in response to a Negotiate message.

NegotiationResponse					
Field name	Type	Required	Value	Description	
MessageType	Enum	Υ	NegotiationResponse		
RequestTimestamp	nanotime	Υ		Matches Negotiate.Timestamp	
SessionId	UUID	Υ		Session Identifier	
ServerFlow	FlowType	Y		Type of flow from server to client	
	Enum				

4.2.4 Reject Session Negotiation

When a session cannot be created, a server sends NegotiationReject to the client, giving the reason for the rejection. No further messages should be sent, and the transport should be terminated.

NegotiationRejectCode = Credentials | Unspecified | FlowTypeNotSupported | DuplicateId

Rejection reasons:

- Credentials: failed authentication because identity is not recognized, or the user is not authorized to use a particular service.
- FlowTypeNotSupported: server does not support requested client flow type.
- DuplicateId: session ID is non-unique.
- Unspecified: Any other reason that the server cannot create a session.

If negotiation is re-attempted after rejection, a new session ID should be generated.

NegotiationReject						
Field name	Туре	Required	Value	Description		
MessageType	Enum	Υ	NegotiationReject			
RequestTimestamp	nanotime	Υ		Matches		
				Negotiate.Timestamp		
SessionId	UUID	Υ		Session Identifier		
Code	NegotiationReject-	Υ				
	Code Enum					
Reason	string	N		Reject reason details		

4.2.5 Session Negotiation Sequence Diagram

Figure 1 Session Negotiation Sequence Diagram

4.3 Session Establishment

Establish attempts to bind the specified logical session to the transport that the message is passed over. The response to Establish is either EstablishmentAck or EstablishmentReject.

4.3.1 Establish

The client sends Establish message to the server and awaits acknowledgement.

There is no specific timeout value for the wait defined in this protocol. Experience should be a guide to determine an abnormal wait after which a server is considered unresponsive. Then establishment may be retried or out-of-band inquiry may be made to determine application readiness.

	· ·		Establish	
Field name	Туре	Required	Value	Description
MessageType	Enum	Υ	Establish	
Timestamp	nanotime	Υ		Time of request
SessionId	UUID	Υ		Session Identifier
KeepaliveInterval	DeltaMillisecs	Y		The longest time in milliseconds the initiator will remain silent before sending a keep alive message
NextSeqNo	u64	N		For re-establishment of a recoverable server flow only, the next application sequence number to be produced by the client.
Credentials	object	N		Optional credentials to identify the client.

Counterparties may agree on a valid range for KeepaliveInterval.

The server should evaluate NextSeqNo to determine whether it missed any messages after reestablishment of a recoverable flow. If so, it may immediately send a RetransmitRequest after sending EstablishAck.

4.3.2 Establish Acknowledgment

Used to indicate the acceptor acknowledges the session. If the communication flow from this endpoint is recoverable, it will fill the NextSeqNo field, allowing the initiator to start requesting the replay of messages that it has not received.

	EstablishmentAck					
Field name	Туре	Required	Value	Description		
MessageType	Enum	Υ	EstablishmentAck			
SessionId	UUID	Υ		SessionId is included only		
				for robustness, as		
				matching		
				RequestTimestamp is		
				enough		
RequestTimestamp	nanotime	Υ		Matches		
				Establish.Timestamp		
KeepaliveInterval	DeltaMillisecs	Υ		The longest time in		
				milliseconds the acceptor		
				will wait before sending a		
				keep alive message		
NextSeqNo	u64	N		For a recoverable server		
				flow only, the next		
				application sequence		
				number to be produced		
				by the server.		

The client should evaluate NextSeqNo to determine whether it missed any messages after reestablishment of a recoverable flow. If so, it may immediately send a RetransmitRequest .

4.3.3 Establish Reject

EstablishmentRejectCode = Unnegotiated | AlreadyEstablished | SessionBlocked | KeepaliveInterval | Credentials | Unspecified

Rejection reasons:

- Unnegotiated: Establish request was not preceded by a Negotiation or session was finalized, requiring renegotiation.
- AlreadyEstablished: EstablishmentAck was already sent; Establish was redundant.
- SessionBlocked: user is not authorized
- KeepaliveInterval: value is out of accepted range.
- Credentials: failed because identity is not recognized, or the user is not authorized to use a particular service.
- Unspecified: Any other reason that the server cannot establish a session.

	Establishment Reject						
Field name	Туре	Required	Value	Description			
MessageType	Enum	Υ	EstablishmentReject				
SessionId	UUID	Y		SessionId is redundant and included only for robustness			
RequestTimestamp	nanotime	Y		Matches Establish.Timestamp			
Code	EstablishmentReject- Code Enum	Y					
Reason	string	N		Reject reason details			

4.3.4 Session Establishment Sequence Diagram

Figure 2 Session Establishment Sequence Diagram

4.4 Transport Termination

Terminate is a signal to the counterparty that this side is dropping the binding between the logical session and the underlying transport. A session may terminate its transport if there are no more messages to send but it intends to restart at a later time.

An established session becomes terminated (stops being established) for the following reasons:

- One of the peers receives a Terminate message.
- The transport was abruptly disconnected.

- The keep-alive interval expired and no keep-alive message received. It is recommended to allow some leniency in timeout to allow for slight mismatches of timers between parties.
- The peer violated this protocol. A specific example of protocol violation is to send a RetransmitRequest while another one is in progress.
- Additionally, a transport should be terminated if an unrecoverable error occurs in message parsing or framing.

TerminationCode = Finished | UnspecifiedError | ReRequestOutOfBounds | ReRequestInProgress

	Terminate					
Field name	Туре	Required	Value	Description		
MessageType	Enum	Y	Terminate			
SessionId	UUID	Y		SessionId is redundant and		
				included only for robustness		
Code	TerminationCode	Y				
	Enum					
Reason	string	N		Reject reason details		

4.4.1 Terminate Response

On a point-to-point session, either peer may initiate termination. Upon receiving a Terminate message, the acceptor must respond to the initiator with a Terminate message before disconnecting the transport.

On a connectionless transport such as UDP, the Terminate message informs the peer that message exchange is suspended.

On a connection-oriented transport such as TCP, when the initiator receives the Terminate response, it must disconnect the transport from its end. When the acceptor receives the TCP peer reset signal, it completes closing of the transport.

4.4.2 Terminate Session Sequence Diagrams

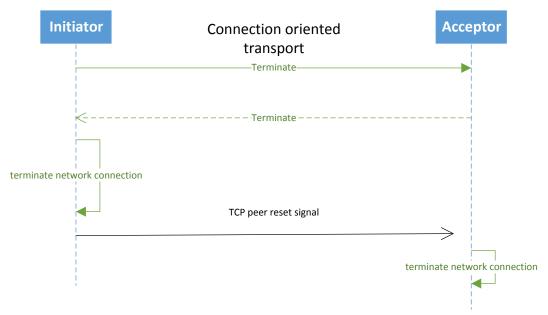


Figure 3 Termination Sequence Diagram - TCP

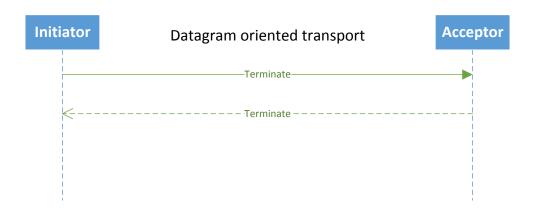


Figure 4 Termination Sequence Diagram - UDP

4.5 Session Heartbeat

Each party must send a heartbeat message during each interval in which no application messages were sent. A client's heartbeat timing is governed by the KeepaliveInterval value it sent in the Establish message, and a server is governed by the value it sent in EstablishAck.

Each party should check whether it has received any message from its counterparty in the expected interval. Silence is taken as evidence that the transport is no longer valid, and the session is terminated in that event.

For recoverable or idempotent flows, the gap detection can be achieved by sending Sequence messages respecting the keepalive interval.

For Unsequenced and None (one-way session) flows, there is the UnsequencedHeartbeat message to detect that a logical session has disappeared or that there is a problem with the transport, allowing the peer to terminate session state timely and to potentially reestablish the session.

UnsequencedHeartbeat						
Field name Type Required Value Description						
MessageType	Enum	Υ	UnsequencedHeartbeat			

When a session is being finalized, but the FinishedReceiving message has not yet been received, then FinishedSending message is used as the heartbeat.

On TCP, it is recommended that Nagle algorithm be disabled to prevent the transmission of heartbeats and other messages from being delayed, potentially causing unnecessary session termination.

4.6 Resynchronization

The following sections describe resynchronization of a recoverable flow.

4.6.1 Retransmission Request

When receiving a recoverable message flow, a peer may request sequenced messages to be retransmitted by sending a *RetransmitRequest* message, which is answered by one or more *Retransmission* messages (or with a *Terminate* message if the request is invalid).

Only one RetransmitRequest is allowed in-flight at a time per session. Another RetransmitRequest may not be sent until a response has been received from a previous request.

The receiver on a recoverable flow should accept messages with a higher sequence number after recognizing a gap. However, the application should queue messages for in-sequence processing after a requested retransmission is received.

Sending a RetransmitRequest to the sender of an Idempotent ,Unsequenced or None flow is a protocol violation. In that case, the session should be terminated.

RestransmitRequest						
Field name	Туре	Required	Value	Description		
MessageType	Enum	Υ	RestransmitRequest			
SessionId	UUID	Υ				
Timestamp	nanotime	Υ		Timestamp used as a unique		
				identifier of the request		
FromSeqNo	u64	Υ		Sequence number of the first		
				message requested		
Count	u32	Υ		Count of messages requested		

4.6.2 Retransmission Responses

Retransmission implies that the subsequent messages are sequenced without requiring that a Sequence message is passed. In a datagram oriented transport, Retransmission is passed in every single retransmission datagram.

Restransmission									
Field name	Туре	Required	Value	Description					
MessageType	Enum	Υ	Restransmission						
SessionId	UUID	Y		Defeats the need for Context when multiplexing					
NextSeqNo	u64	Y		Sequence number of the next message to be retransmitted					
RequestTimestamp	nanotime	Y		Value from RetransmitRequest Timestamp field. Used to match responses to requests.					
Count	u32	Y		Count of messages to be retransmitted in a batch					

4.6.2.1 Retransmission Diagram

Figure 5 Retransmission Diagram

4.6.2.2 Interleaving and Pacing Retransmissions

This protocol does *not* require real-time messages to be held by the sender until retransmission of a range of messages is complete. Rather, ranges of retransmitted and real-time messages may be interleaved. Each time some messages are retransmitted, they must be preceded by a Retransmission message with a count of messages. Each time real-time flow resumes, a Sequence message (or Context message on a multiplexed flow) must be sent.

The provider of a recoverable flow need not retransmit all requested messages in a single batch. Rather, retransmission may be executed as an iterative process. It is the requester's responsibility to determine whether the current batch fills the original gap. If not, it sends another RetransmitRequest for the remainder. Requests and responses proceed iteratively until all desired messages have been retransmitted. This interaction automatically paces the retransmission flow while allowing real-time messages to flow through uninhibited.

Pacing is the responsibility of the retransmitter. It is managed by controlling the size of batches of retransmitted messages. To maximize interleaving with real-time messages without queuing, it is recommended that messages be retransmitted in small batches. Optimally, a batch should not exceed to the size of a datagram, even on a TCP stream.

However, when retransmission is provided through a separate recovery session without interleaving real-time messages, then the retransmitter may choose to fulfill requests in a single batch.

4.6.2.3 Retransmit Rejection

If the provider of a recoverable flow is unable to retransmit requested messages, it responds with a RetransmitReject message.

RetransmitRejectCode = OutOfRange | InvalidSession | RequestLimitExceeded

Rejection reasons:

- OutOfRange: NextSeqNo + Count is beyond the range of sequence numbers
- InvalidSession: The specified SessionId is unknown or is not authorized for the requester to access.
- RequestLimiitExceeded: The message Count exceeds a local rule for maximum retransmission size.

RestransmitReject									
Field name	Туре	Required	Value	Description					
MessageType	Enum	Υ	RestransmitReject						
SessionId	UUID	Υ		Session identifier					
RequestTimestamp	nanotime	Υ		Value from					
				RetransmitRequest					
				Timestamp field. Used to					
				match responses to					
				requests.					
Code	RetransmitRejectCode	Υ							
	Enum								
Reason	string	N		Reject reason details					

4.6.3 RetransmitReject Diagram

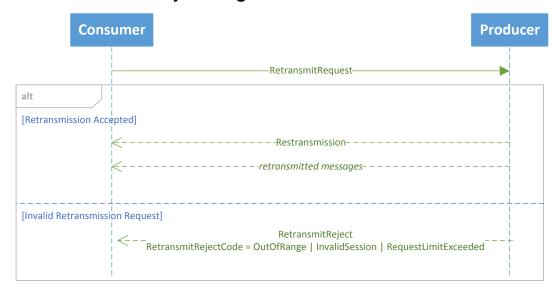


Figure 5 RetransmitReject Diagram

4.6.4 Retransmission Violations

For a RetransmitRequest that the requester should have known was invalid with certainty, the sender should terminate the session. Terminate message with **ReRequestInProgress** code should be sent if it sees a premature retransmit request.

4.6.5 Retransmit Violation Diagram

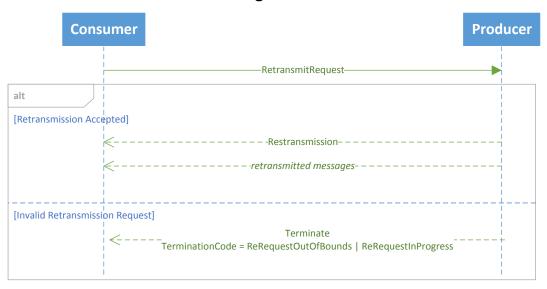


Figure 6 Retransmit Violation Diagram

4.6.6 FIX Application Layer Recovery

As an alternative to a FIXP recoverable flow, application layer sequencing and recovery may be used. To avoid duplication of effort in two layers of the protocol stack, application layer sequencing should be used with a FIXP Unsequenced flow.

See FIX application specifications for a description of the ApplicationSequenceControl group and these message types:

- ApplicationMessageReport
- ApplicationMessageRequest
- ApplicationMessageRequestAck

4.7 Finalizing a Session

Finalization is a handshake that ends a logical session when there are no more messages to exchange.

4.7.1 Finish Sending

A FinishedSending message is sent to begin finalizing a logical session when the last application message in a flow has been sent.

The sender of this message awaits a FinishedReceiving response. It the wait takes longer than KeepaliveInterval for the flow, it should send FinishedSending messages as heartbeats until finalization is complete.

FinishedSending									
Field name	Туре	Required	Value	Description					
MessageType	Enum	Υ	FinishedSending						
SessionId	UUID	Υ		SessionId is redundant and					
				included only for robustness					
LastSeqNo	u64	N		Populated for an idempotent or					
				recoverable flow					

The counterparty should evaluate LastSeqNo to determine whether it has processed the flow to the end. If received on a recoverable flow, the counterparty may send a RetransmitRequest to recover any missed messages before acknowledging finalization of the flow. On an idempotent flow, it should send NotApplied to notify the sender of the gap.

4.7.2 Finish Receiving

Upon processing the last application message indicated by the FinishedSending message (possibly received on a retransmission), a FinishedReceving message is sent in response.

When a FinishedReceiving has been received by the party that initiated the finalization handshake, a Terminate message is sent to unbind the transport. At that point, the session is considered finalized, and its session ID is no longer valid.

	FinishedReceiving									
Field name	Type	Required	Value	Description						
MessageType	Enum	Υ	FinishedReceiving							
SessionId	UUID	Υ		SessionId is redundant and included only						
				for robustness						

4.7.3 Terminating a Recoverable Session Sequence Diagram

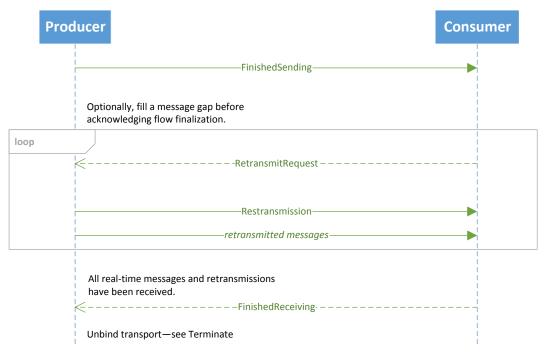


Figure 7 Recoverable Session Termination Sequence Diagram

4.8 Idempotent Flow

When using the idempotent flow, the protocol ensures that each application message is an idempotent operation that will be guaranteed applied only once.

To guarantee idempotence, a unique sequential identifier has to be allocated to each operation to be carried out. The response flow must identify which operations that have been carried out, and is sequenced. The lack of acknowledgment of an operation triggers the operation to be reattempted (at least once semantics). The lack of acknowledgment can be triggered by the acknowledgment of a later operation or by the expiration of a timer. The side carrying out an operation must filter out operations with a duplicate identifier (at most once semantics). If a transaction has already been applied, a duplicate request should be silently dropped. The combination of at-most-once and at-least-once semantics provide exactly-once semantics, making any operation tagged with a unique id to be idempotent.

The sequence number is implicit and is defined using a Sequence message. The first message after Sequence has the sequence number NextSeqNo. The same lifetime rules apply for the implicit sequence number in the idempotent flow, as for the implicit sequence number in the recoverable flow. Unless the recoverable server return flow identifies the result of operations at the application level, implementers may opt to use the following *Applied* or *NotApplied* messages to return the status of the operation.

4.8.1 **Applied**

This is an optional application response for non-standard messages. Standard FIX semantics provide application layer acknowledgements to requests, e.g. Execution Report in response to New Order Single. The principle is to use application specific acknowledgement messages where possible; use the Applied message where an application level acknowledgement message does not exist.

Since Applied is an application message, it will be reliably delivered if returned on a recoverable flow.

Applied									
Field name	Туре	Required	Value	Description					
MessageType	Enum	Υ	Applied						
FromSeqNo	u64	Υ		The first applied sequence number					
Count	u32	Υ		How many messages have been applied					

4.8.2 NotApplied

When a receiver on an idempotent flow recognizes a sequence number gap, it should send the NotApplied message immediately but continue to accept messages with a higher sequence number after the gap.

The sender on an idempotent flow uses the NotApplied message to discover which its requests have not been acted upon. It has a responsibility to make a decision about recovery at an application layer. It may decide to resend the transactions with new sequence numbers, to send different transactions, or to do nothing.

Like Applied, the NotApplied message is handled as an application message. That is, it consumes a sequence number.

It is recommended that the return flow of an idempotent request flow be recoverable to allow Applied and NotApplied message to be resynchronized if necessary. Thus, the sender can determine with certainty (perhaps after some delay) which requests have been accepted.

Sending NotApplied for a Recoverable, Unsequenced or None flow is a protocol violation. On a recoverable flow, RetransmitRequest should be used instead.

NotApplied									
Field name	Туре	Required	Value	Description					
MessageType	Enum	Υ	NotApplied						
FromSeqNo	u64	Υ		The first not applied sequence number					
Count	u32	Υ		How many messages haven't been applied					

4.8.3 Idempotent Flow Sequence Diagram

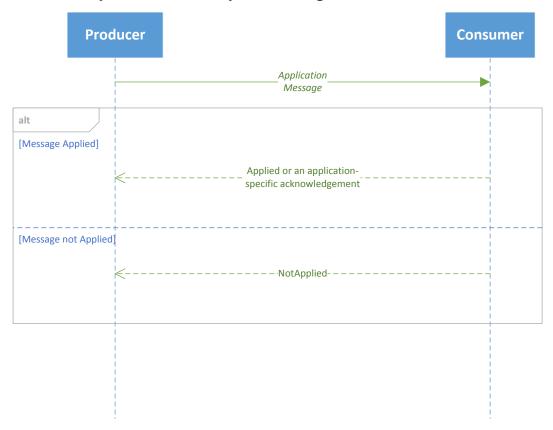


Figure 8 Idempotent Flow sequence diagram

5 Multicast Session Protocol

A multicast session conveys messages one way from a publisher to any number of listeners. It is conducted over a connectionless transport such UDP multicast. Multicast session protocol is typically used for publishing market data or common reference information to many consumers. Multiple independent flows may be multiplexed over a shared multicast transport.

5.1 Multicast Session Lifecycle

Since a multicast transport is connectionless, there is no negotiation or binding or unbinding of the transport as in the point-to-point protocol. Thus, Negotiation and Establishment messages and their respective responses are not used.

Multicast addresses and publishing schedules must be provided out-of-band to listeners. To capture all messages, listeners must be ready to receive at scheduled times. Publishing continues until the end of a logical flow.

5.1.1 Multicast Session Establishment

Like a point-to-point session, a multicast session is identified by a UUID. Each time a session is initiated, a new UUID should be generated, and sequence numbers of subsequent application messages begin with 1.

5.1.1.1 **Topic Message**

To associate a transient UUID to a permanent or semi-permanent classification of messages, a Topic message is used to initiate a flow. Multiple topics may be published on a transport.

FlowType = Recoverable | Idempotent

Valid flow types on a multicast session are:

- **Recoverable**: Messages are sequenced and recoverable. Since the transport is one-way, RetransmitRequests must be delivered through a separate session, however.
- Idempotent: Messages are sequenced to allow detection of loss but any missed messages are not recoverable.

Each Topic carries a Classification for the flow to associate it to a permanent or semi-permanent application layer entity. Typical classifications are product types, market symbols or the like.

To support late joiners, Topic messages should be repeated at regular intervals on a session. This specification does not dictate a specific interval, but the shorter the interval, the less time it takes for a late joiner to identify flows.

	Topic									
Field name	Туре	Required	Value	Description						
MessageType	Enum	Υ	Topic							
SessionId	UUID	Υ		Session Identifier						
Flow	FlowType	Υ		Type of flow from publisher						
	Enum									
Classification	Object	Υ		Category of application messages that						
				follow						

5.1.2 Finalizing a Multicast Session

Finalization ends a logical flow when there are no more application messages to send. A multicast flows is finalized by transmitting a FinishedSending message. No further messages may be sent, and the session ID is no longer valid after that.

5.2 Session Heartbeat

During the lifetime of a multicast session, its publisher should send Sequence or Context messages as a heartbeat at regular intervals when the session is otherwise inactive. This allows a receiver to tell whether a session is live and has not reached the end of its logical flow.

See the section Sequence above for a description of sequence numbering and the Sequence message.

6 Summary of Session Messages

6.1 FIXP Session Messages

Stage	Message Name	Purpose	F	low T	ypes	
			Recoverable	Idempotent	Unsequenced None	Multicast
Initialization	Negotiate	Initiates session	•	•	•	
	NegotiationResponse	Accepts session	•	•	•	
	NegotiationReject	Rejects session	•	•	•	
	Topic	Announces a flow				•
Binding	Establish	Binds session to transport	•	•	•	
	EstablishmentAck	Accepts binding	•	•	•	
	EstablishmentReject	Rejects binding	•	•	•	
Transferring	Sequence	Initiates a sequenced flow, keep-alive	•	•		•
	Context	Multiplexing	•	•	•	•
	UnsequencedHeartbeat	Keep-alive			•	
	RetransmitRequest	Requests resynchronization	•			
	Retransmission	Resynchronization	•			
Unbinding	Terminate	Unbinds a transport	•	•	•	
Finalizing	FinishedSending	Ends a logical flow	•	•	•	•
	FinishedReceiving	Ends a logical flow	•	•	•	

6.2 Related Application Messages

These optional application messages respond to application messages on an idempotent flow.

Stage	Message Name	Purpose
Transferring	Applied	Acknowledge idempotent operations
	NotApplied	Negative acknowledgement of idempotent operations

6.3 Summary of Protocol Violations

If any of these violations by a peer is detected, the session should be terminated.

- Sending a session message that is inappropriate to the flow type, such as a Sequence message on an unsequenced flow. See table above.
- Sending an application message on a session that is not in established state.
- Reusing the session ID of a session that was finalized.
- Sending a RetransmitRequest while a retransmission is in progress.
- Sending a RetransmitRequest with request range out of bounds. That is, it is a violation to request a retransmission of a message with a sequence number that has not been sent yet.

7 Appendix A - Usage Examples (TCP)

These use cases contain sample values for illustrative purposes only

7.1 Initialization

7.1.1 Session negotiation (both Recoverable)

Message Received	Message Sent	Session ID	Timestamp	Request Timestamp	Client Flow	Server Flow	Credentials
Negotiate		ABC	T1		Recoverable		123
	Negotiation Response	ABC		T1		Recoverable	

7.1.2 Session negotiation (both Unsequenced)

Message Received	Message Sent	Session ID	Timestamp	Request Timestamp	Client Flow	Server Flow	Credentials
Negotiate		ABC	T1		Unsequenced		123
	Negotiation Response	ABC		T1		Unsequenced	

7.1.3 Session negotiation (Client Idempotent and Server Recoverable – highly recommended)

Message Received	Message Sent	Session ID	Timestamp	Request Timestamp	Client Flow	Server Flow	Credentials
Negotiate		ABC	T1		Idempotent		123
	Negotiation Response	ABC		T1		Recoverable	

7.1.4 Session negotiation (Client None and Server Recoverable)

Message Received	Message Sent	Session ID	Timestamp	Request Timestamp	Client Flow	Server Flow	Credentials
Negotiate		ABC	T1		None		123
	Negotiation Response	ABC		T1		Unsequenced	

7.1.5 Session negotiation (Client Unsequenced and Server Recoverable)

Message Received	Message Sent	Session ID	Timestamp	Request Timestamp	Client Flow	Server Flow	Credentials
Negotiate		ABC	T1		Unsequenced		123
	Negotiation Response	ABC		T1		Recoverable	

7.1.6 Session negotiation (Client None and Server Unsequenced)

Message Received	Message Sent	Session ID	Timestamp	Request Timestamp	Client Flow	Server Flow	Credentials
Negotiate		ABC	T1		None		123
	Negotiation Response	ABC		T1		Unsequenced	

7.1.7 Session negotiation (rejects)

7.1.7.1 Bad credentials

For example – Valid Credentials are 123 but Negotiate message is sent with Credentials as 456 then it will be rejected.

Message Received	Message Sent	Session ID	Timestamp	Request Timestamp	Client Flow	Code	Reason	Credentials
Negotiate		ABC	T1		Idempot ent			456
	Negotiation Reject	ABC		T1		Bad Credentials	Invalid Trader ID	

7.1.7.2 Flow type not supported

For example – Recoverable flow from Client is not supported but Negotiate message is sent with Client Flow as Recoverable then it will be rejected.

Message Received	Message Sent	Session ID	Timestamp	Request Timestamp	Client Flow	Code	Reason	Credentials
Negotiate		ABC	T1		Recover able			123
	Negotiation Reject	ABC		T1			Client Recoverable Flow Prohibited	

7.1.7.3 Invalid session ID

For example – Session ID does not follow UUID or GUID semantics as per RFC 4122 and Negotiate message is sent with Session ID as all zeros then it will be rejected.

Message Received	Message Sent	Session ID	Timestamp	Request Timestamp	Client Flow	Code	Reason	Credentials
Negotiate		000	0		Idempot ent			123
	Negotiation Reject	000		0			Invalid SessionID Format	

7.1.7.4 Invalid request timestamp

For example – Timestamp follows Unix Epoch semantics and is to be sent with nanosecond level precision but Negotiate message is sent with Timestamp as Unix Epoch but expressed as number of seconds then it will be rejected.

Message Received	Message Sent	Session ID	Timestamp	Request Timestamp	Client Flow	Code	Reason	Credentials
Negotiate		ABC	86400		Idempot ent			123
	Negotiation Reject	ABC		86400			Invalid Timestamp Format	

7.1.7.5 Mismatch of sessionID/RequestTimestamp

For example – the session identifier and the request timestamp in the NegotiationResponse do not match with the Negotiate message then the acknowledgment MUST be ignored and an internal alert may be generated followed by a new Negotiate message

Message Received	Message Sent	Session ID	Timestamp	Request Timestamp	Client Flow	Server Flow	Credentials			
Negotiate		ABC	T1		Recoverable		123			
	Negotiation Response	DEF		T2		Recoverable				
	Ignore NegotiationResponse message since it contains incorrect Session ID and/or RequestTimestamp and Generate Internal Alert and Possibly Retry>									
Negotiate		XYZ	Т3		Recoverable		123			
<new negoti<="" td=""><td colspan="9"><new contain="" id="" message="" negotiate="" new="" session="" should=""></new></td></new>	<new contain="" id="" message="" negotiate="" new="" session="" should=""></new>									

7.1.7.6 NegotiationResponse or Reject Not Received

For example – the Negotiate message is neither accepted nor rejected and one KeepAliveInterval* has lapsed then an internal alert may be generated followed by a new Negotiate message.

Message Received	Message Sent	Session ID	Timestamp	Request Timestamp	Client Flow	Server Flow	Credentials
Negotiate		ABC	T1		Recoverable		123

<one keepal<="" th=""><th>liveInterval has</th><th>lapsed without</th><th>any response></th><th></th><th></th><th></th><th></th></one>	liveInterval has	lapsed without	any response>							
Negotiate	XYZ T3 Recoverable 123									
<new negoti<="" td=""><td colspan="10"><new contain="" id="" message="" negotiate="" new="" session="" should=""></new></td></new>	<new contain="" id="" message="" negotiate="" new="" session="" should=""></new>									

^{*}Even though the KeepAliveInterval is part of the Establish message, generally speaking there will be a recommended value or range agreed to by the counterparties which can serve as a catch-all for these types of scenarios.

7.2 Binding

7.2.1 Establishment (Recoverable)

Message Received	Message Sent	Session ID	Timestamp	Request Timestamp	Client Flow	Keep Alive Interval	Next SeqNo	Server Flow
Negotiate		ABC	T1		Recoverable			
	Negotiation Response	ABC		T1				Recoverable
Establish		ABC	T2			10	1	
	Establishme ntAck	ABC		T2		10	1	

7.2.2 Establishment (Unsequenced)

Message Received	Message Sent	Session ID	Timestamp	Request Timestamp	Client Flow	Keep Alive Interval	Next SeqNo	Server Flow
Negotiate		ABC	T1		Unsequenced			
	Negotiation Response	ABC		T1				Unsequenced
Establish		ABC	T2			10		
	Establish mentAck	ABC		T2		10		

7.2.3 Establishment (idempotent)

Message Received	Message Sent	Session ID	Timestamp	Request Timestamp	Client Flow	Keep Alive Interval	Next SeqNo	Server Flow
Negotiate		ABC	T1		Idempotent			
	Negotiation Response	ABC		T1				Recoverable
Establish		ABC	T2			10	1	
	Establish mentAck	ABC		T2		10	1	

7.2.4 Establishment (none)

Message Received	Message Sent	Session ID	Timestamp	Request Timestamp	Client Flow	Keep Alive Interval	Next SeqNo	Server Flow
Negotiate		ABC	T1		None			
	Negotiation Response	ABC		T1				None
Establish		ABC	T2			10		
	Establish mentAck	ABC		T2		10		

7.2.5 Establishment rejects

7.2.5.1 Unnegotiated

For example – Trying to send an Establish message without first Negotiating the session will result in the Establishment message being rejected.

Message Received	Message Sent	Session ID	Timestamp	Request Timestamp	Code		Keep Alive Interval
Establish		ABC	T2				10
	Establish ment Reject	ABC		T2	Unnegotiated	Establishment Not Allowed Without Negotiation	

7.2.5.2 Already established

For example – Trying to send an Establish message when the session itself is already Negotiated and Established will result in the Establishment message being rejected.

Message Received	Message Sent	Session ID	Timestamp	Request Timestamp	Code	Reason	Keep Alive Interval
Negotiate		ABC	T1				
	Negotiation Response	ABC		T1			
Establish		ABC	T2				10
	Establish mentAck	ABC		T2			10
Establish		ABC	T3				10
	Establish mentReject	ABC		Т3	Already Established	Session is Already Established	

7.2.5.3 Session blocked

For example – if a particular Session ID has been blocked for bad behavior and is not allowed to establish a session with the counterparty then also the Establishment message will be rejected.

Message Received	Message Sent	Session ID	Timestamp	Request Timestamp	Code	Reason	Keep Alive Interval
Negotiate		ABC	T1				
	NegotiationR esponse	ABC		T1			
Establish		ABC	T2				10
	Establishmen tReject	ABC		Т2	Session Blocked	Session Has Been Blocked, Please Contact Market Operations	10

7.2.5.4 Invalid keep alive interval

For example – if the bilateral rules of engagement permit a KeepAliveInterval no smaller than 10 milliseconds then an Establishment message sent with a KeepAliveInterval of 1 millisecond will be rejected.

Message Received	Message Sent	Session ID	Timestamp	Request Timestamp	Code	Reason	Keep Alive Interval
Negotiate		ABC	T1				
	NegotiationR esponse	ABC		T1			
Establish		ABC	T2				1
	Establishmen tReject	ABC		T2	KeepAlive Interval	Invalid KeepAlive Interval	1

7.2.5.5 Invalid session ID

For example – Session ID does not follow UUID or GUID semantics as per RFC 4122 and Establishment message is sent with Session ID as all zeros then it will be rejected.

Message Received	Message Sent	Session ID	Timestamp	Request Timestamp	Code	Reason	Keep Alive Interval
Negotiate		ABC	T1				
	Negotiation Response	ABC		T1			
Establish		000	T2				10
	Establish mentReject	000		T2	Unspecified	Invalid Session ID Format	10

7.2.5.6 Invalid request timestamp

For example – Timestamp follows Unix Epoch semantics and is to be sent with nanosecond level precision but Establishment message is sent with Timestamp as Unix Epoch but expressed as number of seconds then it will be rejected.

Message Received	Message Sent	Session ID	Timestamp	Request Timestamp	Code	Reason	Keep Alive Interval
Negotiate		ABC	T1				
	Negotiation Response	ABC		T1			
Establish		ABC	86400				10
	Establish mentReject	ABC		86400	Unspecified	Invalid Timestamp Format	10

7.2.5.7 Bad credentials

For example – Valid Credentials are 123 but Establishment message is sent with Credentials as 456 then it will be rejected.

Message Received	Message Sent	Session ID	Timestamp	Request Timestamp	Code	Reason	Credentials
Negotiate		ABC	T1				123
	NegotiationR esponse	ABC		T1			
Establish		ABC	T2				456
	Establishmen tReject	ABC		T2	Bad Credentials	Invalid Trader ID	

7.2.5.8 Mismatch of SessionID/RequestTimestamp

For example – the session identifier and the request timestamp in the EstablishmentAck do not match with the Establishment message then the acknowledgment MUST be ignored and an internal alert may be generated.

Message Received	Message Sent	Session ID	Timestamp	Request Timestamp	Client Flow		Next SeqNo	Server Flow	
Negotiate		ABC	T1		Idempotent				
	Negotiation Response	ABC		T1				Recoverable	
Establish		ABC	T2			10			
	Establish mentAck	DEF		T3		10	1		
<ignore alert="" and="" contains="" establishmentack="" generate="" id="" incorrect="" internal="" it="" message="" or="" possibly="" requesttimestamp="" retry="" session="" since=""></ignore>									
Establish		ABC	T4			10			
<new estab<="" td=""><td colspan="9"><new contain="" establish="" id="" message="" same="" session="" should=""></new></td></new>	<new contain="" establish="" id="" message="" same="" session="" should=""></new>								

7.2.5.9 EstablishmentAck or Reject Not Received

For example – the Establish message is neither accepted nor rejected and one KeepAliveInterval has lapsed then an internal alert may be generated followed by a new Establish message.

Message Received	Message Sent	Session ID	Timestamp	Request Timestamp	Client Flow	Server Flow	Credentials	KeepAliveInter val		
Negotiate		ABC	T1		Idempotent		123			
	Negotiation Response	ABC		T1		Recoverable				
Establish		ABC	T2					10		
<one keepa<="" td=""><td>liveInterval has</td><td>lapsed without</td><td>any response></td><td></td><td></td><td></td><td></td><td></td></one>	liveInterval has	lapsed without	any response>							
Establish		ABC	Т3					10		
<new establ<="" td=""><td colspan="10"><new contain="" establish="" id="" message="" same="" session="" should=""></new></td></new>	<new contain="" establish="" id="" message="" same="" session="" should=""></new>									

7.3 Unbinding

7.3.1 Ungraceful termination (time out)

When the KeepAliveInterval has expired and no keep alive message is received then the session is terminated ungracefully and will need to be re-established. The transport level connection is still open (TCP socket) therefore Negotiation is not required. Termination due to error does not require the sender to wait for corresponding Terminate response from counterparty.

Message Received	Message Sent	Session ID	Timestamp	Request Timestamp	Client Flow	Keep Alive Interval	Code	Reason
Negotiate		ABC	T1		Idempote nt			
	Negotiation Response	ABC		T1				
Establish		ABC	T2			10		
	Establish mentAck	ABC		T2		10		
<time inter<="" td=""><td>val Greater Thar</td><td>n Keep Alive II</td><td>nterval Has Lapse</td><td>d Without Any</td><td>Message Bein</td><td>g Received></td><td></td><td></td></time>	val Greater Thar	n Keep Alive II	nterval Has Lapse	d Without Any	Message Bein	g Received>		
	Terminate	ABC					Timed Out	Keep Alive Interval Has Lapsed
Establish		ABC	Т3			10		
	Establish	ABC		Т3		10		

7.3.2 Ungraceful termination (sequence message received with lower sequence number)

The session could also be deliberately terminated due to Sequence message received with lower than expected sequence number and then it will need to be re-established. The transport level connection is still open (TCP socket) therefore Negotiation is not required. Termination due to error does not require the sender to wait for corresponding Terminate response from counterparty.

Message Received	Message Sent	Session ID	Timestamp	Request Timestamp	Next SeqNo	Implicit SeqNo	Client Flow	Server Flow	Code	Reason
Negotiate		ABC	T1				Idempotent			
	Negotiation Response	ABC		T1				Recoverable		
Establish		ABC	T2		200					
	Establish mentAck	ABC		T2	1000					
Sequence					100					
	Terminate	ABC							Unspecifi ed Error	Invalid NextSeqNo
Establish		ABC	T4		200		Idempotent	-		
	Establish mentAck	ABC		T4	1001			Recoverable		

<New Establish message should be sent with same Session ID>

7.3.3 Ungraceful termination (establishment ack received with lower sequence number)

The session could also be deliberately terminated due to EstablishmentAck message received with lower than expected sequence number and then it will need to be re-established. The transport level connection is still open (TCP socket) therefore Negotiation is not required. Termination due to error does not require the sender to wait for corresponding Terminate response from counterparty.

Message Received	Message Sent	Session ID	Timestamp	Request Timestamp	Next SeqNo	Implicit SeqNo	Client Flow	Server Flow	Code	Reason
Negotiate		ABC	T1				Idempotent			
	Negotiation Response	ABC		T1				Recoverable		
Establish		ABC	T2		200					
	Establish mentAck	ABC		T2	1000					
Sequence					100					
	Terminate	ABC							Unspecifi ed Error	Invalid NextSeqNo
Establish		ABC	T4		200		Idempotent			
	Establish mentAck	ABC		T4	1001			Recoverable		

<New Establish message could be sent with same Session ID>

7.3.4 Graceful Termination

Graceful termination is possible when there are no more messages to be sent for the time being and the TCP socket connection could be disconnected for now. This allows the sender to re-establish connectivity with the same session ID as before since the session was terminated without finalization (FinishedSending was not used to indicate logical end of flow). Graceful termination (not due to error) does require the sender to wait for corresponding Terminate response from counterparty before disconnecting TCP socket connection. The receiver

Message Received	Message Sent	Session ID	Timestamp	Request Timestamp	Next SeqNo	Implicit SeqNo	Client Flow	Server Flow	Code	Reason
Negotiate		ABC	T1				Idempotent			
	Negotiation Response	ABC		T1				Recoverable		
Establish		ABC	T2		200					
	Establish mentAck	ABC		T2	1000					
Sequence					201			-		
Terminate		ABC							Finished	
	Terminate	ABC							Finished	
<tcp socket<="" td=""><td>connection is disco</td><td>onnected by se</td><td>nder></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tcp>	connection is disco	onnected by se	nder>							
Establish		ABC	T4		200		Idempotent			
	Establish mentAck	ABC		T4	1001			Recoverable		

7.3.5 Disconnection

When the transport level session itself (TCP socket) has been disconnected then the session needs to be Negotiated and Established.

Message Received	Message Sent	Session ID (UUID)	Timestamp	Request Timestamp	Client Flow	Keep Alive Interval	Server Flow	Reason
Negotiate		ABC	T1		Idempotent			
	Negotiation Response	ABC		T1			Recovera ble	
Establish		ABC	T2			10		
	Establish mentAck	ABC		T2		10		

<tcp socke<="" th=""><th colspan="13"><tcp connection="" disconnected="" is="" socket=""></tcp></th></tcp>	<tcp connection="" disconnected="" is="" socket=""></tcp>												
Negotiate		DEF	Т3		Idempotent								
	Negotiation Response	DEF		Т3			Recovera ble						
Establish		DEF	T4			10							
	Establish mentAck	DEF		T4		10							
<new nego<="" td=""><td>tiate message re</td><td>equires new S</td><td>ession ID></td><td></td><td></td><td></td><td></td><td></td></new>	tiate message re	equires new S	ession ID>										

7.4 Transferring

7.4.1 Sequence

Over TCP – a Client could send a Sequence message at the very beginning of the session upon establishment. The counterparty would not use it initially as it is provided in the EstablishmentAck message.

Message Received	Message Sent	Session ID (UUID)	Timestamp	Request Timestamp	Next SeqNo	Client Flow	Server Flow	Implicit SeqNo
Negotiate		ABC	T1			Idempotent		
	Negotiation Response	ABC		T1			Recoverable	
Establish		ABC	T2		100			
	EstablishmentAck	ABC		T2	1000			
Sequence					100			
NewOrder Single		ABC	T3					100
	ExecutionReport	ABC	T4					1000

Sequence message is applicable for idempotent and recoverable flows and if received for unsequenced and none flows then issue terminate message to sender since it is a protocol violation.

7.4.1.1 Sequence (Higher sequence number)

The Sequence, Context, EstablishmentAck and Retransmission messages are sequence forming. They turn the message flow into a sequenced mode since they have the next implicit sequence number. Any other Session message makes the flow leave the sequenced mode. If the message is sequence forming then the flow does not leave the sequenced mode, but the message potentially resets the sequence numbering.

For example – here the second Sequence message is increasing the NextSeqNo even though it was sent as a keep alive message within a sequenced flow.

Message Received	Message Sent	Session ID (UUID)	Timestamp	Request Timestamp	Next SeqNo	Implicit SeqNo	Client Flow	Server Flow	From SeqNo	Count
Negotiate		ABC	T1				Idempote nt			
	Negotiation Response	ABC		T1				Recoverab le		
Establish		ABC	T2		100					
	Establishment Ack	ABC		T2	1000					
Sequence					100					
NewOrder Single		ABC	Т3			100				
	Execution Report	ABC	T4			1000				
Sequence					200					
NewOrder Single		ABC	T5			200				
	NotApplied								101	100
	Execution Report	ABC	Т6			1001				

7.4.1.2 Sequence (Lower sequence number)

This is an example of a Sequence message being sent with a lower than expected NextSeqNo value even though it was sent as a keep alive message within a sequenced flow.

Message Received	Message Sent	Session ID (UUID)	Timestamp	Request Timestamp	Next SeqNo		Client Flow	Server Flow	Code	Reason
Negotiate		ABC	T1				ldempote nt			
	Negotiation Response	ABC		T1				Recovera ble		
Establish		ABC	T2		100					
	EstablishmentAck	ABC		T2	1000					
Sequence					100					
NewOrder Single		ABC	T3			100				
	ExecutionReport	ABC	T4			1000				
Sequence					50					
	Terminate	ABC								Invalid NextSe qNo

7.4.1.3 Sequence (heartbeat)

The Sequence message could also be used as a heartbeat for idempotent and recoverable flows.

Message Received	Message Sent	Session ID (UUID)	Timestamp	Request Timestamp	Next SeqNo	Client Flow	Server Flow	Keep Alive Interval	Implicit SeqNo
Negotiate		ABC	T1			Idempotent			
	Negotiation Response	ABC		T1			Recoverable		
Establish		ABC	T2		100			10	
	EstablishmentAck	ABC		T2	1000			10	
Sequence			(T2+10)		100				
	Sequence		(T2+11)		1000				
Sequence			(T2+20)		100				
	Sequence		(T2+21)		1000				

7.4.2 Context (Multiplexing Session ID's)

The Context message is needed to convey that a context switch is taking place from one Session ID (ABC) to another (DEF) over the same transport. This way – two sessions (ABC & DEF) could be multiplexed over one TCP connection and there is a one to one relation between the two such that they need to be negotiated and established independently. They will have independent sequence numbering and the value of NextSeqNo in each EstablishmentAck response will depend on where the particular session is sequence wise. There is no need to send a Context message before an application message if the previous application message was destined for the same session. A Context message has to be sent before an application message if the previous application message was destined for another session. This is an example where a Context message is necessary since the previous message was for a different session.

Message Received	Message Sent	Session ID (UUID)	Timestamp	Request Timestamp	Next Seq No	Implicit SeqNo
Negotiate		ABC	T1			
	NegotiationResponse	ABC		T1		
Establish		ABC	T2			
	EstablishmentAck	ABC		T2	1000	
Negotiate		DEF	Т3			
	NegotiationResponse	DEF		Т3		
Establish		DEF	T4			
	EstablishmentAck	DEF		T4	2000	
Context		ABC			100	
NewOrder Single		ABC	T5			100
	Context	ABC			1000	
	ExecutionReport	ABC	Т6			1000
Context		DEF			200	
NewOrder Single		DEF	Т7			200
	Context	DEF			2000	
	ExecutionReport	DEF	Т8			2000

7.4.2.1 Context flow using sequence

This is an example where a Context message is not necessary since the previous message was for the same session and a Sequence message will suffice.

Message Received	Message Sent	Session ID (UUID)	Timestamp	Request Timestamp	Next SeqNo	Implicit SeqNo
Negotiate		ABC	T1			
	NegotiationResponse	ABC		T1		
Establish		ABC	T2			
	EstablishmentAck	ABC		T2	1000	
Sequence					100	
NewOrder Single		ABC	T3			100
	ExecutionReport	ABC	T4			1000
Negotiate		DEF	T5			
	NegotiationResponse	DEF		T5		
Establish		DEF	Т6			
	EstablishmentAck	DEF		Т6	2000	
Sequence					200	
NewOrder Single		DEF	T7			200
	ExecutionReport	DEF	Т8			2000

7.4.3 Unsequenced Heartbeat

This message is used to keep alive the session on unsequenced and none flows.

Message Received	Message Sent	Session ID (UUID)	Timestamp	Request Timestamp	Next SeqNo	Client Flow		Keep Alive Interval	Implicit SeqNo
Negotiate		ABC	T1			Unsequenc ed			
	Negotiation Response	ABC		T1			Recoverable		
Establish		ABC	T2		100			10	
	EstablishmentAck	ABC		T2	1000			10	
Unsequenced Heartbeat			(T2+10)						
Unsequenced Heartbeat			(T2+20)						
Unsequenced Heartbeat			(T2+30)						

7.4.4 Retransmission Request

For recoverable flows, a Retransmission Request could be issued to recover gap in sequence numbers

Message Received	Message Sent	Session ID (UUID)	Timestamp	Request Timestamp	Next SeqNo	Implicit SeqNo	Client Flow	Server Flow	From SeqNo	Count
Negotiate		ABC	T1				Idempote nt			
	Negotiation Response	ABC		T1				Recoverab le		
Establish		ABC	T2		100					
	Establishment Ack	ABC		T2	1000					
	Sequence				1000					
	Execution Report	ABC	Т3			1100				
Retransmi ssionRequ est		ABC	T4						1000	100
	Retransmission	ABC		T4	1000					100

<100 messages between 1000 to 1099 are replayed and message number 1100 is queued for processing after Retransmisison is satisfied>

Retransmission message is not applicable for idempotent, unsequenced and none flows and if received for these flows then issue terminate message to sender since it is a protocol violation.

7.4.4.1 Retransmission (Concurrent)

More than one RetransmissionRequest is not allowed at a time and subsequent in-flight requests will lead to session termination.

Message Received	Message Sent	Session ID (UUID)	Timestamp	Request Timestamp	Next SeqNo	Implicit SeqNo	Client Flow	Server Flow	From SeqNo	Count
Negotiate		ABC	T1				Idempote nt			
	Negotiation Response	ABC		T1				Recoverab le		
Establish		ABC	T2		100					
	Establishment Ack	ABC		T2	1000					
	Sequence				1000					
	Execution Report	ABC	Т3			1100				
Retransmi ssionRequ est		ABC	T4						1000	100
	Retransmission	ABC		T4	1000					100
<50 message	es between 1000 ar	nd 1099 are re	olayed>							
Retransmi ssionRequ est		ABC	T5						1050	50
	Terminate	ABC								
<session td="" ter<=""><td>minated with Term</td><td>inationCode=F</td><td>teRequestInPro₈</td><td>gress></td><td></td><td></td><td></td><td></td><td></td><td></td></session>	minated with Term	inationCode=F	teRequestInPro ₈	gress>						

7.4.4.2 Retransmission (Interleaving)

While responding back to a RetransmissionRequest it is possible that the sender could interleave real time original messages with duplicate retransmission responses. This interleaving will happen between both flows in ranges which could be the chunk of messages which can fit into a single datagram or packet. Each batch of duplicate replayed messages will be preceded by a Retransmission message in the same packet and each batch of real time original messages will be preceded by a Sequence message in the same packet.

Message Received	Message Sent	Session ID (UUID)	Timestamp	Request Timestamp	Next SeqNo	Implicit SeqNo	Client Flow	Server Flow	From SeqNo	Count			
Retransmi ssionRequ est		ABC	T1						1000	100			
	Retransmission	ABC		T1	1000					50			
<real 2000="" 2049="" and="" are="" at="" between="" by="" messages="" queued="" sender="" the="" this="" time=""> Sequence</real>													
Ü	<50 original real time messages between 2000 and 2049 are sent in second packet which includes Sequence message> <duplicate 1050="" 1099="" and="" are="" at="" between="" by="" messages="" queued="" sender="" this="" time=""></duplicate>												
	Retransmission	ABC		T1	1050					50			
<second bat<="" td=""><td>ch of 50 duplicate n</td><td>nessages betw</td><td>veen 1050 and 1</td><td>1099 are send ir</td><td>third packet</td><td>which includ</td><td>les Retrans</td><td>mission me</td><td>essage></td><td></td></second>	ch of 50 duplicate n	nessages betw	veen 1050 and 1	1099 are send ir	third packet	which includ	les Retrans	mission me	essage>				

7.4.5 Retransmission Reject

7.4.5.1 Invalid FromSeqNo

RetransmissionRequest could be rejected if the messages being requested (FromSeqNo) belong to an invalid sequence range i.e. greater than last sent sequence number from sender.

Message Received	Message Sent	Session ID (UUID)	Timestamp	Request Timestamp	Next SeqNo	Implicit SeqNo	Code	Reason	From SeqNo	Count
Negotiate		ABC	T1				Idempote nt			
	Negotiation Response	ABC		T1				Recoverab le		
Establish		ABC	T2		100					
	Establishment Ack	ABC		T2	1000					
	Sequence				1000					
Retransmi ssionRequ est		ABC	Т3						2000	100
	RetransmitReje ct	ABC		Т3			OutOfRan ge	Invalid FromSeqN o		

7.4.5.2 Retransmission Reject (OutOfRange)

RetransmissionRequest could be rejected if the messages being requested (FromSeqNo + Count) belong to an invalid sequence range i.e. greater than last sent sequence number from sender.

Message Received	Message Sent	Session ID (UUID)	Timestamp	Request Timestamp	Next SeqNo	Implicit SeqNo	Code	Reason	From SeqNo	Count
Negotiate		ABC	T1				Idempote nt			
	Negotiation Response	ABC		T1				Recoverab le		
Establish		ABC	T2		100					
	Establishment Ack	ABC		T2	1000					
	Sequence				1000					
Retransmi ssionRequ est		ABC	Т3						900	175
	RetransmitReje ct	ABC		T3			OutOfRan ge	Invalid Range		

7.4.5.3 Retransmission Reject (Invalid Session ID)

RetransmissionRequest could be rejected if the messages are being requested with a different session ID such that it is unknown or not authorized.

Message Received	Message Sent	Session ID (UUID)	Timestamp	Request Timestamp	Next SeqNo	Implicit SeqNo	Code	Reason	From SeqNo	Count
Negotiate		ABC	T1				Idempote nt			
	Negotiation Response	ABC		T1				Recoverab le		
Establish		ABC	T2		100					
	Establishment Ack	ABC		T2	1000					
	Sequence				1000					
Retransmi ssionRequ est		DEF	Т3						850	50
	RetransmitReje ct	DEF		Т3			Invalid Session	Unknown Session ID		

7.4.5.4 Retransmission Reject (Request Limit Exceeded)

RetransmissionRequest could be rejected if the messages being requested exceed the limit for allowable count in each request.

Message Received	Message Sent	Session ID (UUID)	Timestamp	Request Timestamp	Next SeqNo	Implicit SeqNo	Code	Reason	From SeqNo	Count
Negotiate		ABC	T1				Idempote nt			
	Negotiation Response	ABC		T1				Recoverab le		
Establish		ABC	T2		100					
	Establishment Ack	ABC		T2	1000					
	Sequence				1000					
Retransmi ssionRequ est		ABC	Т3						1	999
	RetransmitReje ct	ABC		ТЗ			RequestLi mitExceed ed			

7.4.5.5 Retransmission Reject (Retrasmission Out of Bounds)

RetransmissionRequest asking to replay messages which are no longer available (for example older than three days) could also be rejected.

Message Received	Message Sent	Session ID (UUID)	Timestamp	Request Timestamp	Next SeqNo	Implicit SeqNo	From SeqNo	Count	Code	Reason
Negotiate		ABC	T1							
	Negotiation Response	ABC		T1						
Establish		ABC	T2		200					
	Establish mentAck	ABC		T2	1000					
Retransmit Request		ABC	Т3				1	175		
	RetransmitRe ject	ABC		Т3					ReRequest OutOfBoun ds	Messages No Longer Available

<Here the messages being requested (1-175) were older than 72 hours>

7.5 Finalizing

7.5.1 Finished Sending & Finished Receiving

The FinishedSending message is used by the initiator to inform the acceptor that the logical flow of messages has reached its end i.e. the FIXP session is in the process of being wound down and gracefully terminated, for example at the end of the day or at the end of the week etc. Once the acceptor responds back with a FinishedReceiving confirmation message then the session could be half-closed i.e. no more messages will be sent from the initiator but the acceptor could continue to send messages until

it does not send a FinishedSending message itself to the counterparty to indicate that it too has reached the end of its logical flow and it has no more messages to send.

The FinishedReceiving message is used to confirm that the FinishedSending message has been successfully received and acknowledged and that the FIXP session could be terminated once both counterparties have sent and received a FinishedReceiving message. The initiator is then expected to renegotiate the session with a new SessionID.

Message Received	Message Sent	Session ID (UUID)	Timestamp	Request Timestamp	Next SeqNo	LastSe qNo	ClientFlo w	ServerFlo w	Code	Reason
Negotiate		ABC	T1				Idempote nt			
	Negotiation Response	ABC		T1				Recoverab le		
Establish		ABC	T2		200					
	Establish mentAck	ABC		Т2	1000					
NewOrderS ingle		ABC	Т3							
	EecutionRepo rt	ABC		Т3						
FinishedSen ding		ABC				201				
	FinishedRecei ving	ABC								
	FinishedSendi ng	ABC				1001				
FinishedRec eiving		ABC								
Terminate		ABC							Finished	
	Terminate	ABC							Finished	
	ator has sent the fiving message. The									
Negotiate		DEF	T4							
	NegotiationR esponse	DEF		T4				-		-

7.5.2 Finished Sending & No Response Received

If the initiator has sent a FinishedSending message and does not receive a corresponding FinishedReceiving response from the counterparty within one KeepAliveInterval then it is supposed to keep sending the FinishedSending message until it hears back at the rate of one per KeepAliveInterval i.e. use it as a proxy for the Heartbeat message.

Г	Message	Message Sent	Session ID	Timestamp	Request	Next	LastSe	Code	Reason
	Received		(UUID)		Timestamp	SeqNo	qNo		
П									

FinishedSen ding		ABC				201	
One <keepali the counterpa</keepali 	veInterval> lapses arty	without any c	orresponding F	inished Receive	d respon	se from	
FinishedSen ding		ABC				201	
One <keepali the counterpa</keepali 	veInterval> lapses arty	without any c	orresponding F	inished Receive	d respon	se from	
FinishedSen ding		ABC				201	
	FinishedRecei ving	ABC					

Even though multiple <FinishedSending> messages have been sent, a single <FinishedReceiving> response is sufficient to assume that the session could be terminated i.e. there is no need to wait for separate <FinishedReceving> responses for each <FinishedSending> request sent and the initiator could now terminate the session

7.5.3 Finished Sending & Recoverable Flow

Upon receiving the FinishedSending message, if the counterparty detects a gap in the sequence by scrutinizing the <LastSeqNo> field (which is literal and not implied) then it will attempt to recover this gap in a recoverable flow before responding back with a corresponding FinishedReceiving confirmation message.

Message Received	Message Sent	Session ID (UUID)	Timestamp	Request Timestamp	Next SeqNo	LastSe qNo	FromSeqN o	Count	Code
FinishedSen ding		ABC				201			
•	equence number ionRequest> to re ow		•			•		ng	
	Retransmissio nRequest	ABC	T1				198	4	
Retransmit		ABC		T1	198			4	
responds back	ys messages in re k with correspond sponse to retrans	ing acknowled	gements. The in	nitiator should	be ready	to process			
	FinishedRecei ving	ABC							
	eptor's retransmis eiving> message s	•					ith a		

7.5.4 Finished Sending & Termination

The party which wishes to cease logical flow of messages from its connection at the end of the day, end of the week or upon market close should wait until the other counterparty is also ready to do the same before attempting to terminate the connection otherwise this will be regarded as a protocol violation

and will result in an ungraceful termination of the connection by the other party which has not yet had the opportunity to cease logical flow of its own messages.

Message Received	Message Sent	Session ID (UUID)	Timestamp	•	Next SeqNo	LastSe qNo	FromSeqN o	Count	Code	Reason
FinishedSen ding		ABC				201				
	FinishedRecei ving	ABC								
Terminate		ABC							Finished	
	Terminate	ABC								Logical Flow Interrupte d

7.5.5 Finished Sending & Further Message Flow

The party which wishes to cease logical flow of messages from its connection at the end of the day, end of the week or upon market close should not send any other message after the first FinishedSending message has been sent. The only exception to this rule is the Retransmission message and replayed messages (in response to RetransmissionRequest from counterparty if it detects a gap based on the value of LastSeqNo). If it sends any other message either (FIXP or application) then it will lead to ungraceful termination by the other counterparty since this is a protocol violation. This should be avoided at all costs since if the other counterparty is trying to recover a gap in sequence then that will be aborted.

Message Received	Message Sent	Session ID (UUID)	Timestamp	Request Timestamp	Next SeqNo	LastSe qNo	FromSeqN o	Count	Code	Reason
FinishedSen ding		ABC				201				
	FinishedRecei ving	ABC								
Sequence		ABC			202					
Hara a Sagua	Terminate	ABC		sponded back	with a Fir				Unspecifie d Error	Flow Cannot Resume After Finalizatio n
termination	nce message was	sent arter the	counterparty re	sponded back	with a i ii	naneu nece	iving messe	age and it i	eu to an un	gracerui
Message Received	Message Sent	Session ID (UUID)	Timestamp	Request Timestamp	Next SeqNo	LastSeq No	FromSeqN o	Count	Code	Reason
FinishedSen ding		ABC				201				
Sequence		ABC			202					

	Terminate	ABC							Unspecifie Logical	
									d Error	Flow
										Cannot
										Resume
										After
										Finalizatio
										n
Here a Sequence message was sent before the counterparty could respond back with a Finished Receiving message and it too led to an ungraceful termination										

7.5.6 Finished Sending & Half-Close

Once one of the two parties has ceased logical flow of messages from its connection at the end of the day, end of the week or upon market close then it should still be ready and able to accept messages from the other counterparty till the time that the counterparty itself does not cease logical flow of messages from its own connection. However this should not lead to any corresponding output back from the connection which has been half-closed (with the exception of Retransmission) since that would be a protocol violation and lead to ungraceful termination.

Message Received	Message Sent	Session ID (UUID)	Timestamp	•	Next SeqNo	LastSe qNo	ClientFlo w	ServerFlo w	Code	Reason
FinishedSen ding		ABC				201				
	FinishedRecei ving	ABC								
	EecutionRepo rt	ABC		T5						
	EecutionRepo rt	ABC		Т6						
Retransmis sionReques t		ABC	Т7							
	Terminate	ABC								Logical Flow Cannot Resume After Finalizatio n

Here the initiator has sent a RetransmissionRequest message after ceasing logical flow of messages from its own connection while continuing to accept message flow from acceptor and this will result in an ungraceful termination since the initiator can only respond back to a RetransmisisonRequest but cannot initiate one of its own after half-closing its connection.

8 Appendix B – FIXP Rules of Engagement

This checklist is an aid to specifying a full protocol stack to be used for communication between counterparties

Stack layer	Client	Server						
Application Layer								
Application level recovery								
supported?								
FIX version								
Service pack								
Extension packs								
Presentation Layer								
Message encoding	☐ Simple Binary Encoding							
Version	☐ GPB							
Schema/templates	☐ ASN.1							
	☐ FIX tag-value							
Framing	☐ Simple Open Framing Header							
	☐ None							
Session Layer								
Supported flow types	☐ Recoverable	☐ Recoverable						
	☐ Idempotent	☐ Idempotent						
	☐ Unsequenced	☐ Unsequenced						
	☐ None	☐ None						
Security protocols								
Authentication								
Transport Layer								
Transports supported	☐ TCP							
	□UDP							
Other network protocols								