
FIX Trading Community – Microstructure Working Group

Recommendations for Algorithm Testing Test Cases

Background
The original draft of the MiFID regulatory technical standards (RTS) made some very specific statements regarding how algorithms should be tested and the types of

scenarios that should be covered as part of such testing. The latter specifically made reference to definitions of ‘disorderly trading conditions’ and ‘stressed market

conditions’ as follows:

RTS Text from Dec 2014 Draft Disorderly Trading Conditions Stressed Market Conditions

RTS 13 (requirements for
investment firms)

 Price formation being significantly disrupted

 Systems’ performance is significantly affected by delays
and interruptions

 Multiple erroneous orders and/or transactions are
experienced

 Capacity of trading venues requires to be increased

 An increase or decrease in the number of messages being sent to
and received from the systems of a trading venue

 A significant short-term changes in terms of market volume

 A significant short-term changes in terms of price (volatility)

 An impairment of the performance of the trading systems of a
trading venue or of the members and participants

RTS 14 (requirements for RMs,
MTFs & OTFs)

 A trading system’s performance which is significantly
affected by delays and interruptions

 Multiple erroneous orders and/or transactions, including
cases where orders are not resting for sufficient time to
be executed

 A trading venue has insufficient capacity

 An increase or decrease in the number of messages being sent to
and received from the systems of a trading venue

 A significant short-term changes in terms of market volume

 A significant short-term changes in terms of price (volatility)

The updated draft RTS as of September 2015 has removed the definition of disorderly and stressed market conditions and also removed the obligation for trading venues to

ensure that algorithms are fully tested (this obligation now remains entirely with the investment firm). It would therefore appear to be a matter for each individual

investment firm to determine how to test their algorithms and define the scope of the testing. This document seeks to provide guidance on this topic, establishing

recommendations for the scope of testing and guidance on how to perform such testing. This has been prepared by the FIX Trading Community Microstructure Working

Group which is comprised of industry experts from investment firms, trading venues and suppliers of technology products/services to both.

Though the original definitions of disorderly trading conditions and stressed market conditions are not in the latest draft RTS, the Working Group still feels they provide a

good basis to define test cases. We categorise ‘disorderly trading conditions’ as market disruption events being caused by issues with an algorithm or trading venue system,

e.g. capacity, delays, runaway algorithms. We categorise ‘stressed market conditions’ as where markets are undergoing unusual volatility/volume due to external forces

(i.e. nothing to do with malfunctioning algorithms or trading platforms). A good example would be the Swiss franc revaluation in early 2015.

Overall Requirements
The MiFID RTS places the obligation to test algorithms on the investment firm operating the algorithms. Though it is ultimately up to individual investment firms to

determine how best to achieve this, the following guidelines have been prepared to assist investment firms in meeting these requirements.

 Tests should be completely repeatable (i.e. same order book behaviour, same market data inputs etc.). This is to allow re-testing of an algorithm that fails a test and has

since undergone remediation.

 Tests should also undergo some pseudo-randomisation to minimise the risk of overfitting algorithm behaviour to precise test scenarios. The test scenarios below

provide some examples of how this could be used, e.g. randomising the timing of certain events in the test environment.

 This second bullet obviously contradicts the first bullet, the implication being that the test environment should be able to operate in both a fully repeatable mode and a

pseudo-random mode, with only the latter being eligible for an algorithm to pass the tests.

 The test environment should be able to simulate various stressed market conditions, either by using historical replays of particular trading days or by having an order

book simulator capable of replicating such behaviour.

 The test environment should be able to simulate other market participants, specifically those with algorithms themselves causing disorderly or stressed market

conditions (the test scenarios below contain examples of this).

 The test environment should, where relevant, be able to simulate the behaviour of multiple order books trading the same instrument (e.g. primary market plus MTFs

for equities) and simulate disorderly or stressed market conditions against either the market the algorithm is directly trading on, or some combination of one or more

of this and the other markets.

 The test environment should be able to score the behaviour of the algorithm against agreed, predetermined and objective criteria (see ‘success criteria’ below) and

log/retain this in a format suitable for the investment firm’s compliance function. It is recommended that this log contain:

 The date and time the test was run.

 The identifier of the algorithm (the ‘investment’ or ‘execution’ id as referenced in the RTS on order record keeping and transaction reporting).

 Pass/fail status together with the actual test scores for the algorithm as per the test criteria.

Criteria for Testing & Retesting Algorithms
The MiFID RTS states that investment terms shall ‘set up clearly delineated development and testing methodologies’ prior to the ‘initial deployment or substantial update’

of a trading algorithm. Though it is up to individual investment firms to interpret this, we make the following recommendations as regards good practice in this regard:

 Testing should be performed for each new algorithm.

 Testing should be performed for an existing algorithm which:

 Is being used on a market that has a different market model or order book characteristics to the market(s) on it is currently used (e.g. an algorithm currently in use

only in continuous trading sessions that has been adapted for use in auctions).

 Is being used on a different asset class (e.g. an algorithm currently in use for equities being used for futures).

 Has undergone a material change in functionality, for example (note this is not intended as an exhaustive list):

 Addition of a new trading behaviour to an existing algorithm (e.g. adding dynamic volume participation logic to a previously static percent-of-volume

algorithm).

 A change in key input information (e.g. moving to a different market data infrastructure or provider).

 A substantial change to the algorithm software code even if it does not result in any expected functionality changes (e.g. code refactoring, performance

optimisations, code merges).

 It is not considered necessary that algorithms be retested based on infrastructure changes such as hardware or operating system version upgrades.

Success Criteria

An algorithm should be considered to have passed if the test scenarios are executed and none of the following occur:

 The algorithm does/would not trigger a circuit breaker (in a simulation environment it is sufficient to verify that the simulated market with the algorithm running does

not undergo a significant price move compared with the simulated market running without the algorithm – ‘significant’ to be interpreted as being large enough to

trigger an exchange circuit breaker)

 OTR remains below a certain limit

 The algorithm does not cause market impact (similar to the first point)

 The algorithm does not significantly increase participation in the market (which can be measured as being above an expected percent of volume)

 The algorithm, where appropriate, exits the market and, if so, does so without causing or exacerbating stressed market conditions

Test Scenarios
The table below describes sample test scenarios, test execution steps and associated test infrastructure requirements. Not all tests may be relevant for each algorithm or all

market models/trading phases against which a particular algorithm may operate, and investment firms will need to use their judgement in this regard. It is recommended

that appropriate tests from this table be performed for all trading phases (e.g. continuous trading, auctions) and market models (e.g. continuous trading, RFQ) that the

algorithm is designed to support.

Requirement Test Scenario Test Method (including market data reqts) Implementation details

Disorderly Trading Conditions

Venue trading system
performance significantly
affected by delays

Trading platform slows down (e.g. due to
high volumes), with ‘slow down’ meaning
any of:

 Latency in order acks

 Latency in order cancels

 Latency in fill distribution

 Latency in market data distribution

For multi-market algorithms, test both for:

 One trading platform slowing down.

 Multiple trading platforms slowing
down.

Artificially, and on a randomised basis (both
randomise the start and end time of the
slowness, and the extent of the slowness) slow
down the trading platform and run the
algorithm against the slow platform.

Three separate tests, targeting different
aspects of the trading platform:

 Order entry

 Distribution of fills (if the platform handles
these separately to order processing)

 Market data

For all three cases, we can consider ‘latency’ to
be:

 A multiple of (say 100x) the platform’s
typical latency (typically for European order
driven markets this will be latency of
around 10ms to 100ms).

 A set delay of several milliseconds or more
(depending on the type of trading
platform).

 Use production statistics from the actual
trading venues and use 99th percentile
figures.

For order entry latency, can introduce
latency in gateway to order book (effect
is to delay the order ack and result in
missed fills). There is also a variant
where the gateway is running at full
speed but the order book itself is slow
(where you have slow acks but still
likely to get the fills you were expecting,
those being delayed also). Should leave
this choice to discretion of test system
operator.

For fill distribution latency, can do this
either at order book level or gateway
level (but leave to discretion of test
system operator).

Market data latency – slow down
market data feed handler (while NOT
slowing.

Consider the scenarios where:

 Order book is slow, others are fine

 Order book is fine, gateways are
fine, market data is slow

 Order book is fine, gateways are

Requirement Test Scenario Test Method (including market data reqts) Implementation details

slow , market data is fine

Venue trading system
performance significantly
affected by interruptions

Trading platform disconnects participants

 The participant doing the testing

 Other participants

Where the trading platform supports
cancel-on-disconnect behaviour (and this is
used in the live environment) then the
testing needs to use/replicate such
behaviour.

Run the platform (with regular latency) and, on
an unpredictable (i.e. random-timed) basis,
disconnect and reconnect a participant

 Both the one doing the testing

 Somebody else

We are looking for both the disconnection and
the reconnection/restart not to cause any
problems (e.g. by accidentally replaying
orders).

 Disconnect and reconnect rapidly (i.e.
around 1 second, depending on platform’s
capabilities) – this should test the
algorithm’s ability to ‘recover’ quickly

 Disconnect and reconnect some time later
(e.g. around 10 minutes, to be randomised)
– to ensure that the algorithm logic does
not cause disorderly conditions on restart
e.g. by trying to unwind positions, catch up
on trading etc.

Randomly disconnecting the testing
participant

 Test system to disconnect ALL
participants at random times within
an agreed time window.

 One of each type of disconnection –
short duration and long duration.

Note ‘disconnect’ and ‘reconnect’ in
practice may involve the test system
disconnecting the participant and then
being able to accept reconnections a)
soon, b) much later (noting that in
practice, many venues require
participants to reconnect to them,
rather than the other way round).

Multiple erroneous orders
and/or transactions

We are interpreting this to mean an
environment where one or more
participants are repeatedly and rapidly
placing orders and cancelling them (i.e.
sending an order, cancelling it, then sending
another order, cancelling that and so on).

A second test is to perform a number of
executions and then bust them (for markets
which actually support this).

Requires a ‘dummy participant’ with such an
algorithm.

 Test participant algorithms without this
running

 Test again with this running

Second test would involve the venue (on an
unpredictable basis) busting a large number of
executions.

Within an agreed time window, for a
randomised period, the test system
actives the ‘dummy participant’ and
then stops it.

Then, at a later randomised time, have
the test system bust some of the
executions from the dummy
participant.

Requirement Test Scenario Test Method (including market data reqts) Implementation details

“Rapidly” will vary from platform to
platform so we propose calibrating this
as:

 Order entry/cancellation at a rate
such that passive orders remain on
the book (before cancellation) for a
period of time equivalent to the
gateway-gateway latency of the
market.

 Randomised mixture of passive and
aggressive orders (passive to test
the cancel capability, aggressive to
obtain fills to bust later). Have
periods of passive-only, aggressive-
only and mixed.

 Messages to be sequenced as an
order followed by its cancel.

Multiple orders that are
resting for insufficient time to
be executed

 As above, except that the orders are
immediately cancelled (and hence no fills)

Covered above

Capacity of trading venue
requires to be increased (i.e.
reaches a capacity limit, has
insufficient capacity for current
volumes)

Single market reaches a capacity limit and a)
slows down, b) disconnects from
participants.

These are both covered above

Covered above. Covered above.

Stressed Market Conditions

An increase or decrease in the
number of messages being
sent to and received from the
systems of a trading venue

Scenarios covering erroneous orders are
covered above under ‘Disorderly’, so we are
treating this as purely covering genuinely
busy/quiet situations. A good example
would be Swiss franc revaluation (for a busy
day).

Consider three types of scenario:

For an increase can replay a historical busy day
(e.g. Swiss franc revaluation) or simulate data
(either completely synthetic or by speeding
up/merging data replays).

For a decrease, recommend using simulated
data or use historical data from a quiet day
(e.g. the period between Christmas and New
Year).

Need to consider separately an increase
in market data (e.g. quote) volumes,
and an increase in trade volumes.

Three permutations:

 Increase in market data and trades.

 Increase in market data, trade
volumes as normal.

Requirement Test Scenario Test Method (including market data reqts) Implementation details

 The entire day is busy/quiet.

 The day starts ‘normally’ and suddenly
goes quiet/busy for a prolonged period
(e.g. rest of day, 1 hour).

 The day starts ‘normally’ and suddenly
goes quiet/busy for a short period (e.g.
10 seconds).

Consider this happening on:

 A single instrument

 An entire market.

For the per-stock test, best to pick a stock
(from a set list) at random.

For the time-based tests, pick a time at random
within a specified time range.

 Market data volumes normal, trade
volumes increased.

Simplest way to increase both is to
speed up some real data.

To separate them out will require data
simulation as you will need to vary the
‘matchability’ of the orders.

 We should define a ‘normal’
message rate to be, say, a full year
average to be recalibrated every
year.

 For ‘busy’, take a random one of a
sample of the 10 busiest days
observed over the year and double
it.

 For ‘quiet’, take a random one of a
sample of the 10 quietest days
observed over the year and halve it.

For the time considerations, this is
easiest done with simulation (except for
the ‘all day’ test which could be done
also with real data).

Significant short-term changes
in terms of market volume

Use test cases above. Use test cases above (but ensure sufficient
execution ratios to achieve high traded
volume).

Covered above.

Significant short-term changes
in terms of price (volatility)

Same permutations as above.

Include also:

 Changes that do not breach a venue’s
controls

 Changes that do (e.g. cause a volatility
interrupt)

Should be able to find some real-world
examples for specific stocks.

For a market-wide, can use the Swiss franc
example (very little pan-market since financial
crisis, Japan tsunami), IOB in 2014 (on back of
Ukraine situation).

And simulation options as per above.

Randomisation tricky using real data so

Requirement Test Scenario Test Method (including market data reqts) Implementation details

recommend simulation.

Impairment of the
performance of the trading
systems of a trading venue or
of the members and
participants

Similar to the first item under ‘Disorderly’,
so we are assuming that this requires us to
combine the above ‘stressed conditions’
tests with the first in the lists under
‘disorderly’.

Covered above. Covered above.

