FIX APPLICATION NOTE

Security Protocol

Overview

No matter what the communication medium, be it dedicated circuit, analog telephone lines or commercial TCP network (Internet), there exists the danger of having FIX messages fall into the wrong hands. Worse yet, without the ability to verify the originator and content of a FIX message, the danger exists to perform business transactions that have not been authorized. The FIX protocol was designed with application level encryption designed in. This application note discusses how the FIX protocol accommodates security.

This application note addresses Authentication, Confidentiality and Integrity for data transmitted between the Institution and the Broker. It describes the protocol for Key Exchange, Data Encryption of selected fields in the FIX message, and Data Integrity for the entire FIX message.

The protocol described here first establishes a session key during the initial logon sequence. This key is then used to encrypt data in subsequent messages. Lastly, the entire message (including the header) is integrity protected using a Digital Signature. An API that implements this protocol is described in a separate note.

Introduction

The encryption method for the FIX session is established during the Logon sequence. The Client side initiates a session by connecting to the Broker and sending a LOGON message. Besides serving to authenticate the two parties to each other, this message also establishes the session key used for subsequent data encryption and integrity protection. The LOGON message is also used to change the session key in the middle of an active session.

There are four types of encryption methods officially supported by the FIX protocol. They are: DES encryption, a combination of PKCS and DES, a combination of PGP, DES and MD5, and a combination of PEM, DES and MD5. The DES encryption method uses Secret key technology, while the rest use Public key technology. FIX implementations should be able to handle messages encrypted with any of these techniques. However, the encryption protocol allows the communicating parties to use the encryption technique with which they are most comfortable. Valid values for the EncryptMethod field are:

0 = None

2 = DES

3 = PKCS-DES (The requirement for this proprietary method may be dropped later)

4 = PGP-DES-MD5

5 = PEM-DES-MD5

The originator of the connection selects the encryption method and its associated parameters by specifying it in the LOGON message.

If the Null encryption option is selected, then all data is transmitted unencrypted. There is no data integrity protection. If present, Signature Data should be ignored. This option should be selected only during application debugging, or when the FIX session data is being transmitted only on a physically secure network. This note does not describe the PKCS-DES option; the protocol for PKCS-DES encryption is significantly different from the protocol that is described here.

There are four fields specifically set aside to support encryption and integrity protection. They are: Encrypted Data Length, Encrypted Data, Signature Data Length, and Signature Data. The FIX protocol is primarily ASCII character code based. However, most encryption techniques generate character codes across the complete 256 character data set. In order to not confuse a valid FIX field delimiter (ASCII code 0x01) with some encrypted data, each encrypted data field must be preceded by the data length of the encrypted data. This allows the FIX parser to skip past the characters that may look like field delimiters embedded in the encrypted data. The same applies for Signature data.

When an encrypted FIX message is received, the recipient parses any unencrypted field that may be included in the message. The rest of the message is then decrypted and re-parsed to build the complete decrypted FIX message.

The sender has the option of encrypting as many or as few fields as they desire. They should, however, encrypt all fields that are considered to be sensitive. Also, the FIX protocol specifies some fields that must always be sent encrypted when encryption is enabled. These fields are: Sending Time, Sequence Number, Poss Dup Flag, SenderCompID, and TargetCompID. By always sending these fields encrypted, an attacker is prevented from capturing FIX messages and replaying them at a later time to the same destination or to another destination altogether.

Both data encryption and data integrity checking depend on reliable data transmission between the two parties. If encryption is enabled, then lost or duplicate data will force the session to be restarted. This implies that the FIX data should be sent over a “stream oriented” transport layer, like TCP or X.25. Data transmitted by either party must be delivered in the correct sequence and without any gaps.

Key Exchange

The purpose of this step is to establish a session key. If the encryption technique specified is DES, then the encryption key is assumed to be known in advance to the two parties. A secret key cannot be exchanged over the network without it being picked up by a third party. Public key encryption solves this problem by using a pre-established set of public and private keys. Each party makes their public key widely available. The corresponding private key is closely guarded and is not made available to anyone else. At logon time, the originator of the session will randomly generate a DES key, encrypt it with the Public key of the recipient and send it as part of the LOGON message. For authentication, the message is signed using the sender’s private key. The signed and encrypted message follows the PEM (or PGP) standard.

PEM is an Internet Standard for “Privacy Enhanced Mail”, defined by RFC 1422 [1]. A PEM message format is used to exchange the session information structure. PGP is an alternate format for doing pretty much the same thing.

The SessionInfo structure is 24 bytes long, and is laid out so that the first 8 bytes are the DES_Key, the next 8 bytes are the IVec, and then the ChanBinding. It will be encapsulated in a RawData field and will be part of the data encrypted using public key encryption. The field is laid out as follows:

	char	DES_Key[8]		8 byte DES Session Key

	char	IVec[8]		8 byte DES Initialization Vector

	char	ChanBinding[8]	Info to bind data to channel

Explanation of the fields:

DES_Key: The DES session key. The parity bits should be set correctly for each of the 8 bytes. Care should be taken to generate these values randomly so that they cannot be predicted by an attacker. Also, care should be taken to avoid certain bit patterns that are known “weak” keys. A different value should be chosen for each session

IVec:	 Initialization vector used for DES CBC mode encryption. It should be selected randomly. A different value should be chosen for each session.

ChanBinding: This field is also used to restrict replay attacks. It should contain the port number of the Broker’s FIX engine. The value should be in ASCII and it should have at least one leading blank character.

To construct a FIX logon message, the application developer should first fill in the SessionInfo structure and properly encapsulate it as RawData. This means that a RawDataLength field should precede the RawData field. Next, all the fields that are to be encrypted are assembled in a buffer. The following fields should be included: MsgSeqNum, SendingTime, SendingDate, RawDataLength and RawData. A PEM/PGP message is constructed, using this buffer as input. The encrypted message contains sufficient information to authenticate the Originator to the Recipient, and to securely establish the session key. This message uses the recipient’s public key for privacy and the sender’s private key for authentication. The resulting encrypted data is converted to ASCII text. The encrypted data (PEM/PGP message) is encapsulated in the SecureData field. A SecureDataLen field indicates the length of the data. Alternatively, if the EncryptMethod is DES (i.e. option 2), the buffer is encrypted using the DES master key previously negotiated between the two parties. Like the public key, the DES master key is used only for encrypting LOGON messages.

The logon message header must always contain the SendingDate and SendingTime. Further, these fields must be encrypted in the PEM/PGP message. This helps to restrict replay attacks. The FIX engine at the Broker’s end will reject logon requests if the data and time in these fields do not match the time on the local system. A tolerance of 10 mins (in either direction) is recommended.

The logon message format looks like:

Tag�Field Name�Req’d�Comments���StandardHeader�Y�MsgType=A��98�EncryptMethod�Y�(Always unencrypted)��108�HeartBtInt�Y�new, only in FIX 3.0��90�SecureDataLength�Y�Length of following information��91�SecureData�Y�contains DES Session Key���StandardTrailer�Y���(Note that some fields that are part of the StandardHeader are now encrypted

within RawData.)

The protocol allows for the session key to be changed during an active session. A new LOGON message can be initiated by either side. The message would contain a new DES key structure encrypted in a way similar to the initial LOGON message. To prevent attacks where a LOGON message is replayed from a previous session, the new LOGON message must have the correct sequence number and date/time stamps. The sequence numbers should not be reset. The other party would respond to this message back to the originator. From that point on, all messages will be encrypted using the new key. Note that the encryption method selected here need not be the same as that selected in the initial LOGON message.

LOGON messages need not have a Signature field (see the section on Integrity Protection) in the message trailer. However, if the field is present, the integrity of the LOGON message will be verified. The DES key required to perform the integrity check is the value inside that LOGON message. All other messages should include the Signature field, which is to be computed as described below. LOGOUT messages too should be encrypted and integity protected like all other FIX messages.

DES Data Encryption

This section describes the encryption of data in all messages other than the logon message. The data to be encrypted is first formatted in a buffer as described by the FIX protocol specification. The buffer should contain a series of FIX fields, and the last characted of the buffer should be the FIX delimiter (SOH character, ASCII value 0x01). It is then padded so that the data length becomes a multiple of 8. Padding is done by appending a number of random bytes to the message after the data (i.e. after the last byte of the buffer). The value of each byte can be anything except SOH.

The data buffer is then encrypted using DES in CBC (Cypher Block Chaining) mode. The DES session encryption key established in the LOGON message is used. The first buffer to be encrypted uses the Initialization Vector specified in the logon message. Subsequent buffers use the last 8 bytes of the output of the previous encryption function (i.e. the encrypted data) as the Initialization Vector. The entire encrypted buffer is encapsulated in a SecureData field. This field is preceded by a SecureDataLen field. Note that the SecureData field will contain non ASCII (binary) characters. On the decrypting side, the initial IV is also taken from the LOGON message. Subsequent IVs are set to the last 8 bytes of the encrypted message (that was just decrypted.)

After decryption, the extraneous trailing padding bytes (following the last SOH byte) are discarded from the result before processing the FIX fields that were decrypted. These are the bytes that were inserted to make the message length a multiple of 8. This step can be accomplished by dropping characters from the end of the buffer until a delimiter is encountered.

Integrity Protection

The purpose of this step is to protect the entire message from intentional message modification attacks. Both the unencrypted header and the encrypted data will be protected. Note that simply encrypting a message with DES does not always provide integrity protection for the message. If the encrypted data is modified, the resulting decrypted data will be garbage, but the application may not always be able to detect that the data is invalid. The DES encryption key established during the logon sequence is used for Integrity Protection as well.

The MD5 Message Digest algorithm is used to construct a secure integrity check. The entire message (incuding the header and the encrypted body, but excluding the trailer) is protected. The resulting checksum forms the message signature which is placed in the trailer. Note that this checksum is not related to the CheckSum field that appears in the standard FIX message.

To compute a signature, the DES session key is fed into the MD5 engine as the first 8 bytes. The high order byte (most significant) is fed in first. Next, the unencrypted portion of the FIX header is processed. Then, the DES encrypted portion of the FIX message is fed in. Lastly, the 8 byte DES session key is fed in again (to protect against a message padding attack). Except for the StandardTrailer, the whole message contributes to the message signature.

The resulting 16 byte MD5 digest forms the message signature. The length of this value is placed in the SignatureLength field which is followed by the Signature field. The signature is transmitted as binary data, thus, the SignatureLength will contain the value “16”.

This algorithm protects against replay of FIX messages within a session because the DES Initialization Vector is changed for each message. Duplicated messages can be detected and discarded.

Outstanding Issues

The Broker is dependent on the originator’s ability to generate a good random session key. A better design would allow both parties to contribute to the session key.

Message type is not encrypted. This allows a passive watcher to obtain some information through traffic analysis.

The procedure for periodically changing the session key is not adequately described. The LOGON message may not be not well suited for changing the session key.

A response is needed for the LOGON message.

Nonrepudiation of individual transactions is not supported.

References

RFC1422: Privacy Enhancement for Internet Electronic Mail: Part II: Certificate-Based Key Management.

FIX Security API: man pages.

November 15, 1995	MORGAN STANLEY 	� PAGE �4�

