

FINANCIAL INFORMATION
EXCHANGE PROTOCOL

(FIX)

 Version 1.1 Errata

 FIX SESSION PROTOCOL

 March 2008

© Copyright, 2006-2008, FIX Protocol, Limited

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 2 of 68

DISCLAIMER

THE INFORMATION CONTAINED HEREIN AND THE FINANCIAL INFORMATION EXCHANGE
PROTOCOL (COLLECTIVELY, THE "FIX PROTOCOL") ARE PROVIDED "AS IS" AND NO PERSON OR
ENTITY ASSOCIATED WITH THE FIX PROTOCOL MAKES ANY REPRESENTATION OR WARRANTY,
EXPRESS OR IMPLIED, AS TO THE FIX PROTOCOL (OR THE RESULTS TO BE OBTAINED BY THE USE
THEREOF) OR ANY OTHER MATTER AND EACH SUCH PERSON AND ENTITY SPECIFICALLY
DISCLAIMS ANY WARRANTY OF ORIGINALITY, ACCURACY, COMPLETENESS, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. SUCH PERSONS AND ENTITIES DO NOT WARRANT
THAT THE FIX PROTOCOL WILL CONFORM TO ANY DESCRIPTION THEREOF OR BE FREE OF
ERRORS. THE ENTIRE RISK OF ANY USE OF THE FIX PROTOCOL IS ASSUMED BY THE USER.

NO PERSON OR ENTITY ASSOCIATED WITH THE FIX PROTOCOL SHALL HAVE ANY LIABILITY FOR
DAMAGES OF ANY KIND ARISING IN ANY MANNER OUT OF OR IN CONNECTION WITH ANY USER'S
USE OF (OR ANY INABILITY TO USE) THE FIX PROTOCOL, WHETHER DIRECT, INDIRECT,
INCIDENTAL, SPECIAL OR CONSEQUENTIAL (INCLUDING, WITHOUT LIMITATION, LOSS OF DATA,
LOSS OF USE, CLAIMS OF THIRD PARTIES OR LOST PROFITS OR REVENUES OR OTHER ECONOMIC
LOSS), WHETHER IN TORT (INCLUDING NEGLIGENCE AND STRICT LIABILITY), CONTRACT OR
OTHERWISE, WHETHER OR NOT ANY SUCH PERSON OR ENTITY HAS BEEN ADVISED OF, OR
OTHERWISE MIGHT HAVE ANTICIPATED THE POSSIBILITY OF, SUCH DAMAGES.

No proprietary or ownership interest of any kind is granted with respect to the FIX Protocol (or any rights therein),
except as expressly set by FIX Protocol Limited's Copyright and Acceptable Use Policy.

© Copyright 2003-2008 FIX Protocol Limited, all rights reserved

REPRODUCTION

FIX Protocol Limited grants permission to print in hard copy form or reproduce the FIX Protocol specification in its
entirety provided that the duplicated pages retain the “Copyright FIX Protocol Limited” statement at the bottom of
the page.

Portions of the FIX Protocol specification may be extracted or cited in other documents (such as a document which
describes one’s implementation of the FIX Protocol) provided that one reference the origin of the FIX Protocol
specification (http://www.fixprotocol.org) and that the specification itself is “Copyright FIX Protocol Limited”.

FIX Protocol Limited claims no intellectual property over one’s implementation (programming code) of an
application which implements the behavior and details from the FIX Protocol specification.

http://www.fixprotocol.org/

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 3 of 68

Contents – FIX Session Protocol

INTRODUCTION ...5

TRANSMITTING FIXML OR OTHER XML-BASED CONTENT ...5

FIX MESSAGE DELIVERY..5
SEQUENCE NUMBERS: ..5
HEARTBEATS:...6
ORDERED MESSAGE PROCESSING: ...6
POSSIBLE DUPLICATES: ..6
POSSIBLE RESENDS: ...6
DATA INTEGRITY:...6
MESSAGE ACKNOWLEDGMENT: ...7
ENCRYPTION: ...7

SESSION PROTOCOL ..8
APPLICATION VERSION INDEPENDENCE ...8

Default Application Version Identification..8
Extension Pack Support...9

Extension Pack Backround.. 9
Use of Extension Packs ... 9

Custom Application Version Support ..10
LOGON ...10
MESSAGE EXCHANGE ...11
LOGOUT ...11
MESSAGE RECOVERY ...12
LOGON MESSAGE NEXTEXPECTEDMSGSEQNUM PROCESSING ..14
STANDARD MESSAGE HEADER ...15

Application Version Independence Considerations...15
Message Routing Details ...15

STANDARD MESSAGE TRAILER...19
COMPONENTS ...19

HopGrp component block..19
ADMINISTRATIVE MESSAGES ..20

HEARTBEAT..20
LOGON ...21

MsgTypeGrp component block..22
TEST REQUEST ...24
RESEND REQUEST...25
REJECT (SESSION-LEVEL)..26
SEQUENCE RESET (GAP FILL) ..29

Gap Fill mode..29
Reset mode...29

LOGOUT ...31
FIXT HEADER MAPPING TABLE...33

FIXT TRAILER MAPPING TABLE..38

FIX SESSION-LEVEL TEST CASES AND EXPECTED BEHAVIORS ...39
APPLICABILITY...39

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 4 of 68

WHEN TO SEND A LOGOUT VS. WHEN TO JUST DISCONNECT ...39
WHEN TO SEND A SESSION REJECT VS. WHEN TO IGNORE THE MESSAGE...39
WHAT CONSTITUTES A GARBLED MESSAGE ..40
FIX SESSION-LEVEL STATE MATRIX ..41
FIX LOGON PROCESS STATE TRANSITION DIAGRAM ...43
FIX LOGOUT PROCESS STATE TRANSITION DIAGRAM ...44
TEST CASES ..46

Buyside-oriented (session initiator) Logon and session initiation test case..46
Sellside-oriented (session acceptor) Logon and session initiation test case ...47
Test cases applicable to all FIX systems ...49

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 5 of 68

COMMUNICATION USING THE FIX SESSION PROTOCOL

INTRODUCTION
FIX Session Protocol was written to be independent of any specific communications protocol (X.25, asynch,
TCP/IP, etc.) or physical medium (copper, fiber, satellite, etc.) chosen for electronic data delivery. It offers a
reliable stream where a message is delivered once and in order. Up until October 2006, the FIX Session Protocol
was coupled with the FIX Application Protocol to provide a reliable transport mechanism for the FIX application
messages that did not really exist at the inception of FIX in 1994.

The session level is concerned with the delivery of data while the application level defines business related data
content. This document focuses on the delivery of data using the “FIX Session Protocol”. For details on the FIX
Application Protocol please refer to the appropriate version of the FIX Protocol Specification documentation set
found on the FIX website (http://www.fixprotocol.org/specifications/)

In October 2006, FPL's Global Technical Committee introduced a new framework which separated the FIX Session
Protocol from the FIX Application Protocol. This allowed the application protocol messages to use any suitable
session transport technology, where the FIX Session Protocol became one of the available options as a session
transport for FIX application messages. With this new framework, the GTC has introduced a new moniker
associated with the FIX Session Protocol. Going forward the moniker to identifier the session protocol and the
version is FIXT.x.y, with the first version being FIXT 1.1.

TRANSMITTING FIXML OR OTHER XML-BASED CONTENT
While the FIX Session Protocol is based upon “Tag=Value” syntax for the Standard Header, Standard Trailer, and
the Administrative Messages which make up the FIX Session Protocol, it is possible to send FIXML or other XML-
based content (“payload”) via the FIX Session Protocol. The FIXML or other XML-based content is enclosed in a
traditional “Tag=Value” FIX standard header via the standard header’s XmlDataLen and XmlData fields and
followed by the “Tag=Value” FIX standard trailer. This allows a FIX Engine (software which implements the FIX
Session Protocol) to transmit FIXML or other XML-based content via the robust, real-time asynchronous transport
which has been in use for many years. The generic MsgType field (tag 35) value of “n” (lowercase n) for "XML
message (e.g. non-FIX MsgType)" can be used when transmitting XML content which is not defined with a FIX
MsgType.

FIX MESSAGE DELIVERY
The following section summarizes general specifications for transmitting FIX messages.

Sequence Numbers:
All FIX messages are identified by a unique sequence number. Sequence numbers are initialized at the start of
each FIX session (see Session Protocol section) starting at 1 (one) and increment throughout the session.
Monitoring sequence numbers will enable parties to identify and react to missed messages and to gracefully
synchronize applications when reconnecting during a FIX session.

Each session will establish an independent incoming and outgoing sequence series; participants will maintain a
sequence series to assign to outgoing messages and a separate series to monitor for sequence gaps on incoming
messages.

http://www.fixprotocol.org/specifications/

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 6 of 68

Heartbeats:
During periods of message inactivity, FIX applications will generate Heartbeat messages at regular time
intervals. The heartbeat monitors the status of the communication link and identifies incoming sequence
number gaps. The Heartbeat Interval is declared by the session initiator using the HeartBtInt field in the Logon
message. The heartbeat interval timer should be reset after every message is transmitted (not just heartbeats).
The HeartBtInt value should be agreed upon by the two firms and specified by the Logon initiator and echoed
back by the Logon acceptor. Note that the same HeartBtInt value is used by both sides, the Logon “initiator”
and Logon “acceptor”.

Ordered Message Processing:
The FIX protocol assumes complete ordered delivery of messages between parties. Implementers should
consider this when designing message gap fill processes. Two options exist for dealing with gaps, either
request all messages subsequent to the last message received or ask for the specific message missed while
maintaining an ordered list of all newer messages. For example, if the receiver misses the second of five
messages, the application could ignore messages 3 through 5 and generate a resend request for messages 2
through 5, or, preferably 2 through 0 (where 0 represents infinity). Another option would involve saving
messages 3 through 5 and resending only message 2. In both cases, messages 3 through 5 should not be
processed before message 2.

Possible Duplicates:
When a FIX engine is unsure if a message was successfully received at its intended destination or when
responding to a resend request, a possible duplicate message is generated. The message will be a
retransmission (with the same sequence number) of the application data in question with the PossDupFlag
included and set to "Y" in the header. It is the receiving application's responsibility to handle the message (i.e.
treat as a new message or discard as appropriate). All messages created as the result of a resend request will
contain the PossDupFlag field set to “Y”. Messages lacking the PossDupFlag field or with the PossDupFlag
field set to “N” should be treated as original transmissions. Note: When retransmitting a message with the
PossDupFlag set to Y, it is always necessary to recalculate the CheckSum value. The only fields that can
change in a possible duplicate message are the CheckSum, OrigSendingTime, SendingTime, BodyLength and
PossDupFlag. Fields related to encryption (SecureDataLen and SecureData) may also require recasting.

Possible Resends:
Ambiguous application level messages may be resent with the PossResend flag set. This is useful when an
order remains unacknowledged for an inordinate length of time and the end-user suspects it had never been
sent. The receiving application must recognize this flag and interrogate internal fields (order number, etc.) to
determine if this order has been previously received. Note: The possible resend message will contain exactly
the same body data but will have the PossResend flag and will have a new sequence number. In addition the
CheckSum field will require recalculation and fields related to encryption (SecureDataLen and SecureData)
may also require recasting.

Data Integrity:
The integrity of message data content can be verified in two ways: verification of message length and a simple
checksum of characters.

The message length is indicated in the BodyLength field and is verified by counting the number of characters in
the message following the BodyLength field up to, and including, the delimiter immediately preceding the
CheckSum tag (“10=”).

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 7 of 68

The CheckSum integrity check is calculated by summing the binary value of each character from the “8” of
“8=“ up to and including the <SOH> character immediately preceding the CheckSum tag field and comparing
the least significant eight bits of the calculated value to the CheckSum value (see “CheckSum
Calculation” for a complete description).

Message Acknowledgment:
The FIX session protocol is based on an optimistic model; normal delivery of data is assumed (i.e. no
acknowledgment of individual messages) with errors in delivery identified by message sequence number gaps.
Each message is identified by a unique sequence number. It is the receiving application's responsibility to
monitor incoming sequence numbers to identify message gaps for response with resend request messages.

The FIX protocol does not support individual message acknowledgment. However, a number of application
messages require explicit application level acceptance or rejection. See Volume 1 of the FIX Protocol
specification for more details on FIX application messaging behavior.

Encryption:
The use of SecureData(91) to encrypt FIX message has been deprecated in FIXT.1.1 The use of custom
encryption is no longer recommended. Refer to the Information Security White Paper from the FIX Information
Security Subcommittee.

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 8 of 68

SESSION PROTOCOL
A FIX session is defined as a bi-directional stream of ordered messages between two parties within a continuous
sequence number series. A single FIX session can exist across multiple sequential (not concurrent) physical
connections. Parties can connect and disconnect multiple times while maintaining a single FIX session. Connecting
parties must bi-laterally agree as to when sessions are to be started/stopped based upon individual system and time
zone requirements. Resetting the inbound and outbound sequence numbers back to 1, for whatever reason,
constitutes the beginning of a new FIX session.

It is recommended that a new FIX session be established once within each 24 hour period. It is possible to maintain
24 hour connectivity and establish a new set of sequence numbers by sending a Logon message with the
ResetSeqNumFlag set.

The FIX session protocol is based on an optimistic model. Normal delivery of data is assumed (i.e. no
communication level acknowledgment of individual messages) with errors in delivery identified by message
sequence number gaps. This section provides details on the implementation of the FIX session layer and dealing
with message sequence gaps.

The following terms are used throughout this section:

• Valid FIX Message is a message that is properly formed according to this specification and contains a
valid body length and checksum field

• Initiator establishes the telecommunications link and initiates the session via transmission of the initial
Logon message.

• Acceptor is the receiving party of the FIX session. This party has responsibility to perform first level
authentication and formally declare the connection request “accepted” through transmission of an
acknowledgment Logon message.

• FIX Connection is comprised of three parts: logon, message exchange, and logout.

• FIX Session is comprised of one or more FIX Connections, meaning that a FIX Session spans
multiple logins.

Application Version Independence
A FIXT.1.1 FIX session supports transmission of multiple versions of Application Messages over the same FIX
session.

A FIXT.1.1 FIX session can support transmission of multiple application versions of the same Message Type.

Default Application Version Identification
Session Default Application Version

The Session Default Application Version is specified in the DefaultApplVerID(1137) of the Logon Message
used to initiate a FIX session. The Session Default Application Version must be specified at Logon time.

Message Type Default Application Version

The MsgTypeGrp component can optionally be used to specify what Application Messages are supported over
the FIX Session being initiated.

Within the MsgTypeGrp component,, a FIX session can specify a Message Type Default Application Version
on the Logon message within the MsgTypeGrp Component. For each Message Type where the default
application version is different from the Session Default Application Version, the Message Type Default
Application Version is specified using the RefMsgType(372) field to specify the MsgType, the

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 9 of 68

RefApplVerID(1130) to specify the Application Version and the DefaultVerIndicator(1410) field to indicate if
the RefApplVerID(1130) as the default.

The Message Type Default Application Version has precedence over the Session Default Application Version.

Explicit Application Version

The application version can be specified on a Message Instance using the ApplVerID(1128) field from the
FIXT.1.1 Standard Header.

The Explicit Application Version only applies to the Message Instance in which it is sent, default application
versions remain unaltered.

The Explicit Application Version has precedence over the Message Type Default Application Version and the
Session Default Application Version.

FIX Message Processors (colloquially FIX engines) must maintain state information regarding the Default
Application Version used during the FIX Session.

Application Version Precedence

Application Version Fields Precedence

Session Default DefaultApplVerID(1137) Lowest level of precedence

Message Type Default RefMsgType(372),
RefApplVerID(1130),
DefaultVerIndicator(1410)

Supercedes the Session Default
Application Version.

Explicit ApplVerID(1128) Has precedence over Default
Application Versions. Only applies
to the Message Instance.

Extension Pack Support
The concept of an Extension Pack was introduced with FIX.5.0 and FIXT.1.1 in order to permit adoption of
functionality between versions of FIX. An Extension Pack is a set of changes to the FIX Specification (more
accurately – to the FIX Repository). Prior to the introduction of FIX.5.0 and FIXT.1.1, early adopters were
required to use user defined tags to adopt new functionality as part of the existing version. Extension Packs
permit the assignment of tag numbers and message types so that specific enhancements can be adopted
between versions of the FIX Specification.

Extension Pack Backround

Extension Packs are identified by a sequential integer number and must be applied in order.

Extension Packs are cumulative.

Extensions are applied sequentially to create a Version of FIX, normally released as a Service Pack (starting
with FIX.5.0).

An Extension Pack is considered available for use, if it has been approved and released for use by the FIX
Global Technical Committee.

Use of Extension Packs

A FIX session can optionally specify a default extension pack as part of the Session Default Application
Version by inclusion of a valid Extension Pack number in the DefaultApplExtID(1407).

An Extension Pack can be specified for a specific Message Type using the RefApplExtID(1406) field within
the MsgTypeGrp Comoponent. If provided, the RefApplExtID becomes part of the Message Type Default
Application Version.

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 10 of 68

A Message Instance can explicitly include an Extension Pack in the ApplExtID(1156) field. If the ApplExtID is
specified it becomes part of the Explicit Application Version.

An Extension Pack is considered Incompatible with the Application Version if the Extension Pack specified is
less than the last Extension Pack that were used to create the Application Version.

Given Application Version N, created from Extension Packs, x , x+1, .. x+y, an Extension Pack z is considered
compatible with Application Version N if z > x+y.

Note to FIX Message Processor Implementors: There is no requirement for a FIX Message Processor to be
able to dynamically configure and apply Extension Packs. The creation of Application Versions that include
Extension Packs is deemed to be done outside of standard processing during development or configuration
time. [REWORD]

Custom Application Version Support
In order to permit counterparties to create custom versions of FIX that restrict and.or extend the FIX
specification, the concept of a Custom Appplication Version has been introduced. The Custom Application
Version can be considered and implementation specific dictionary based upon the Application Version
specified in an ApplVerID field.

The Custom Application Version can be a subset of a FIX Application Version.

By counterparty agreement, a Custom Application Version can be optionally specified. The Custom
Application Version is a user defined string whose format is left undefined by the specification. Users can
choose to use a URI or URL for instance. Marketplaces may choose to use their market acronym and a version
number, such as CME5.0 or OMX5.0 for instance.

A default Custom Application Version can be specified in the DefaultCstmApplVerID(1408), If specified, the
DefaultCstmApplVerID becomes part of the Session Default Application Version.

A default Custom Application Version can be specified for a Message Type using the
RefCstmApplVerID(1131) field. If specified, the RefCstmApplVerID becomes part of the Message Type
Default Application Version.

A Custom Application Version can be specified explicitly on an Application Message using the
CstmApplVerID(1129) field in the FIXT Standard Header. If specified, the CstmApplVerID becomes part of
the Explicit Application Version for the message instance.

Application Version Not Specified on FIXT.1.1 Session Level MessagesFIX Session Level messages (Logon,
Logout, Reject, ResendRequest, SequenceReset, TestRequest, Heartbeat) are versioned as part of the FIXT.1.1
Session Level.

The use of the Explicit Application Version fields [ApplVerID(1128), ApplExtID(1156), CstmApplVerID
(1129)] is not permitted on FIX Session Level Messages.

Logon
Establishing a FIX connection involves three distinct operations: creation of a telecommunications level link,
authentication/acceptance of the initiator by the acceptor and message synchronization (initialization). The
sequence of connection follows:

• The session initiator establishes a telecommunication link with the session acceptor.

• The initiator sends a Logon message. The acceptor will authenticate the identity of the initiator by
examining the Logon message. The Logon message will contain the data necessary to support the
previously agreed upon authentication method. If the initiator is successfully authenticated, the acceptor
responds with a Logon message. If authentication fails, the session acceptor should shut down the

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 11 of 68

connection after optionally sending a Logout message to indicate the reason of failure. Sending a Logout in
this case is not required because doing so would consume a sequence number for that session, which in
some cases may be problematic. The session initiator may begin to send messages immediately following
the Logon message, however, the acceptor may not be ready to receive them. The initiator must wait for the
confirming Logon message from the acceptor before declaring the session fully established.

After the initiator has been authenticated, the acceptor will respond immediately with a confirming Logon
message. Depending on the encryption method being used for that session, this Logon message may or
may not contain the same session encryption key. The initiator side will use the Logon message being
returned from the acceptor as confirmation that a FIX session has been established. If the session acceptor
has chosen to change the session encryption key, the session initiator must send a third Logon back to the
other side in order to acknowledge the key change request. This also allows the session acceptor to know
when the session initiator has started to encrypt using the new session key. Both parties are responsible for
infinite loop detection and prevention during this phase of the session.

• After authentication, the initiator and acceptor must synchronize their messages through
interrogation of the MsgSeqNum field before sending any queued or new messages. A comparison of
the MsgSeqNum in the Logon message to the internally monitored next expected sequence number will
indicate any message gaps. Likewise, the initiator can detect gaps by comparing the acknowledgment
Logon message’s MsgSeqNum to the next expected value. The section on message recovery later in this
document deals with message gap handling.

• It is recommended to wait a short period of time following the Logon or to send a TestRequest and wait for
a response to it before sending queued or new messages in order to allow both sides to handle resend
request processing. Failure to do this could result in a ResendRequest message being issued by one’s
counterparty for each queued or new message sent. (see "Logon Message NextExpectedMsgSeqNum
Processing" for an alternative approach)

• It is also recommended that an engine should store out of sequence messages in a temporary queue and
process them in order when the gap is closed. This prevents generating resend requests for n->m, n->m+1,
n->m+2, ... which can result in many resent PossDupFlag=Y messages.

• When using the ResetSeqNumFlag to maintain 24 hour connectivity and establish a new set of sequence
numbers, the process should be as follows. Both sides should agree on a reset time and the party that will
be the initiator of the process. Note that the initiator of the ResetSeqNum process may be different than the
initiator of the Logon process. One side will initiate the process by sending a TestRequest and wait for a
Heartbeat in response to ensure of no sequence number gaps. Once the Heartbeat has been received, the
initiator should send a Logon with ResetSeqNumFlag set to Y and with MsgSeqNum of 1. The acceptor
should respond with a Logon with ResetSeqNumFlag set to Y and with MsgSeqNum of 1. At this point
new messages from either side should continue with MsgSeqNum of 2. It should be noted that once the
initiator sends the Logon with the ResetSeqNumFlag set, the acceptor must obey this request and the
message with the last sequence number transmitted “yesterday” may no longer be available. The
connection should be shutdown and manual intervention taken if this process is initiated but not followed
properly.

Message exchange
After completion of the initialization process, normal message exchange begins. The formats for all valid
messages are detailed in the sections 'Administrative Messages' and 'Application Messages'.

Logout
Normal termination of the message exchange session will be completed via the exchange of Logout messages.
Termination by other means should be considered an abnormal condition and dealt with as an error. Session
termination without receiving a Logout should treat the counterparty as logged out.

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 12 of 68

It is recommended that before sending the Logout message, a TestRequest should be issued to force a Heartbeat
from the other side. This helps to ensure that there are no sequence number gaps.

Before actually closing the session, the Logout initiator should wait for the opposite side to respond with a
confirming Logout message. This gives the acceptor a chance to perform any Gap Fill operations that may be
necessary. Once the messages from the ResendRequest have been received, the acceptor should issue the
Logout. The session may be terminated if the acceptor does not respond in an appropriate timeframe.

Note: Logging out does not affect the state of any orders. All active orders will continue to be eligible for
execution after logout.

Message Recovery
During initialization, or in the middle of a FIX session, message gaps may occur which are detected via the
tracking of incoming sequence numbers. The following section provides details on how to recover messages.

As previously stated, each FIX participant must maintain two sequence numbers for each FIX session, one each
for incoming and outgoing messages which are initialized at ‘1’ at the beginning of the FIX session. Each
message is assigned a unique (by connection) sequence number, which is incremented after each message.
Likewise, every message received has a unique sequence number and the incoming sequence counter is
incremented after each message.

When the incoming sequence number does not match the expected number corrective processing is required.
Note that the SeqReset-Reset message (used only to recover from a disaster scenario vs. normal resend request
processing) is an exception to this rule as it should be processed without regards to its MsgSeqNum. If the
incoming message has a sequence number less than expected and the PossDupFlag is not set, it indicates
a serious error. It is strongly recommended that the session be terminated and manual intervention be
initiated. If the incoming sequence number is greater than expected, it indicates that messages were missed
and retransmission of the messages is requested via the Resend Request (see the earlier section, Ordered
Message Processing).

Note: For the purposes of the following paragraphs requester refers to the party requesting the resend and
resender refers to the party responding to the request. The process of resending and synchronizing messages is
referred as “gap filling”.

Upon receipt of a Resend Request, the resender can respond in one of three ways:

1. retransmit the requested messages (in order) with the original sequence numbers and PossDupFlag set
to “Y” except for the administrative messages (listed below) which are not to be resent and which
require a SeqReset-GapFill (#2)

2. issue a SeqReset-GapFill with PossDupFlag set to “Y” message to replace the retransmission of
administrative and application messages

3. issue a SeqReset-Reset with PossDupFlag set to “Y” to force sequence number synchronization

The normal course of action involves a combination of #1 and #2. Note that #3 should be used ONLY to
recover from a disaster situation which cannot be otherwise recovered via “Gap Fill” mode

During the gap fill process, certain administrative messages should not be retransmitted. Instead, a
special SeqReset-GapFill message is generated. The administrative messages which are not to be resent
are: Logon, Logout, ResendRequest, Heartbeat, TestRequest and SeqReset-Reset and SeqReset-GapFill.
The SeqReset-GapFill can also be used to skip application messages that the sender chooses not to retransmit
(e.g. aged orders). This leaves Reject as the only administrative message which can be resent.

All FIX implementations must monitor incoming messages to detect inadvertently retransmitted administrative
messages (PossDupFlag flag set indicating a resend). When received, these messages should be processed for

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 13 of 68

sequence number integrity only; the business/application processing of these message should be skipped (i.e. do
not initiate gap fill processing based on a resent ResendRequest).

If there are consecutive administrative messages to be resent, it is suggested that only one SeqReset-GapFill
message be sent in their place. The sequence number of the SeqReset-GapFill message is the next expected
outbound sequence number. The NewSeqNo field of the GapFill message contains the sequence number of
the highest administrative message in this group plus 1. For example, during a Resend operation there are 7
sequential administrative messages waiting to be resent. They start with sequence number 9 and end with
sequence number 15. Instead of transmitting 7 Gap Fill messages (which is perfectly legal, but not network
friendly), a SeqReset-GapFill message may be sent. The sequence number of the Gap Fill message is set to
9 because the remote side is expecting that as the next sequence number. The NewSeqNo field of the
GapFill message contains the number 16, because that will be the sequence number of the next message to be
transmitted.

Sequence number checking is a vital part of FIX session management. However, a discrepancy in the sequence
number stream is handled differently for certain classes of FIX messages. The table below lists the actions to
be taken when the incoming sequence number is greater than the expected incoming sequence number.

NOTE: In *ALL* cases except the Sequence Reset - Reset message, the FIX session should be
terminated if the incoming sequence number is less than expected and the PossDupFlag is not set. A
Logout message with some descriptive text should be sent to the other side before closing the session.

Response by Message Type

Message Type Action to Be Taken on Sequence # mismatch

Logon Must always be the first message transmitted. Authenticate and accept the
connection. After sending a Logon confirmation back, send a
ResendRequest if a message gap was detected in the Logon sequence
number.

Logout If a message gap was detected, issue a ResendRequest to retrieve all missing
messages followed by a Logout message which serves as a confirmation of
the logout request. DO NOT terminate the session. The initiator of the
Logout sequence has responsibility to terminate the session. This allows the
Logout initiator to respond to any ResendRequest message.

If this side was the initiator of the Logout sequence, then this is a Logout
confirmation and the session should be immediately terminated upon receipt.

The only exception to the “do not terminate the session” rule is for an
invalid Logon attempt. The session acceptor has the right to send a Logout
message and terminate the session immediately. This minimizes the threat
of unauthorized connection attempts.

ResendRequest Perform the Resend processing first, followed by a ResendRequest of your
own in order to fill the incoming message gap.

SeqReset-Reset Ignore the incoming sequence number. The NewSeqNo field of the SeqReset
message will contain the sequence number of the next message to be
transmitted.

SeqReset-GapFill Send a ResendRequest back. Gap Fill messages behave similar to a
SeqReset message. However, it is important to insure that no messages have
been inadvertently skipped over. This means that GapFill messages must be
received in sequence. An out of sequence GapFill is an abnormal condition

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 14 of 68

All Other Messages Perform Gap Fill operations.

Logon Message NextExpectedMsgSeqNum Processing
The NextExpectedMsgSeqNum (789) field has been added in FIX 4.4 to the Logon message to support a proposed
new way to resynchronize a FIX session. This new method is optional and its use should be bilaterally agreed upon
between counterparties.

NextExpectedMsgSeqNum (789) is used as follows:

In its Logon request the session initiator supplies in NextExpectedMsgSeqNum (789) the value next expected from
the session acceptor in MsgSeqNum (34). The outgoing header MsgSeqNum (34) of the Logon request is assigned
the next-to-be-assigned sequence number as usual.

The session acceptor validates the Logon request including that NextExpectedMsgSeqNum (789) does not represent
a gap. It then constructs its Logon response with NextExpectedMsgSeqNum (789) containing the value next
expected from the session initiator in MsgSeqNum (34) having incremented the number above the Logon request if
that was the sequence expected. The outgoing header MsgSeqNum (34) is constructed as usual.

The session initiator waits to begin sending application messages until it receives the Logon response. When it is
received the initiator validates the response including that NextExpectedMsgSeqNum (789) does not represent a
gap.

Both sides react to NextExpectedMsgSeqNum (789) from its counterparty thus:

• If equal to the next-to-be-assigned sequence, proceed sending new messages beginning with that number.

• If lower than the next-to-be-assigned sequence, "recover" (see "Message Recovery") all messages from the the
last message delivered prior to this Logon through the specified NextExpectedMsgSeqNum (789) sending them
in order; then Gap Fill over the sequence number used in Logon and proceed sending newly queued messages
with a sequence number one higher than the original Logon.

• If higher than the next-to-be-assigned sequence, send Logout to abort the session.

Neither side should generate a ResendRequest based on MsgSeqNum (34) of the incoming Logon message but
should expect any gaps to be filled automatically. If a gap is produced by the Logon message MsgSeqNum (34),
the receive logic should expect the gap to be filled automatically prior to receiving any messages with sequences
above the gap.

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 15 of 68

Standard Message header
Each administrative or application message is preceded by a standard header. The header identifies the message
type, length, destination, sequence number, origination point and time.

Two fields help with resending messages. The PossDupFlag is set to Y when resending a message as the result of a
session level event (i.e. the retransmission of a message reusing a sequence number). The PossResend is set to Y
when reissuing a message with a new sequence number (i.e. when resending an order). The receiving application
should process these messages as follows:

PossDupFlag - if a message with this sequence number has been previously received, ignore message, if not,
process normally.

PossResend - forward message to application and determine if previously received (i.e. verify order id and
parameters).

Application Version Independence Considerations
FIXT header and trailer must maintain backward compatibility with headers and trailers from FIX.4.0 through
FIX.4.4.

FIX Message Processors must map the FIXT.1.1 Header and Trailer to the appropriate headers and and trailer
for the corresponding FIX Application Version.

Refer to the FIXT Header Mapping Table provided near the end of this document.

Message Routing Details

Message Routing Details – One Firm-to-One Firm (point-to-point)
The following table provides examples regarding the use of SenderCompID, TargetCompID, DeliverToCompID,
and OnBehalfOfCompID when using a single point-to-point FIX session between two firms. Assumption
(A=sellside, B =buyside):

 SenderCompID OnBehalfOfCompID TargetCompID DeliverToCompID

A to B directly A B

B to A directly B A

Message Routing Details – Third Party Message Routing
The FIX Session Protocol supports the ability for a single FIX session to represent multiple counterpaties. This can
be in a 1-to-many, many-to-1, or 1-to-1 fashion. In addition, some third parties may be connected to other third
parties effectively forming a “chain” of “hops” between the original message initiator and the final message
receiver. The SenderCompID, OnBehalfOfCompID, TargetCompID, and DeliverToCompID fields are used for
routing purposes.

When a third party sends a message on behalf of another firm (using OnBehalfOfCompID), that third party may
optionally add their details to the NoHops repeating group. This repeating group builds a “history” of third parties
through which the original message was re-transmitted. The NoHops repeating group is NOT used to facilitate
routing, rather it provides an audit trail of third party involvement to the receiver of a message. An audit trail of
intermediary involvement may be a requirement of some regulatory bodies or counterparties. When a third party
forwards a message on to the next hop (may be the end point or another third party), that third party can add its hop
details to the NoHops repeating group (i.e. its SenderCompID as HopCompID, its SendingTime as
HopSendingTime, and the received message’s MsgSeqNum or some other reference as HopRefID).

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 16 of 68

Note that if OnBehalfOfCompID or DeliverToCompID message source identification/routing is used for a
FIX session, then it must be used on all Application messages transmitted via that session accordingly (Reject
the message if not).

The following table provides examples regarding the use of SenderCompID, TargetCompID, DeliverToCompID,
and OnBehalfOfCompID when using a single FIX session to represent multiple firms. Assumption (A=sellside, B
and C=buyside, Q=third party):

 SenderCompID OnBehalfOf
CompID

TargetCompID DeliverTo
CompID

HopCompID HopSendingTime

Send from A to B via Q

1) A sends to Q A Q B

2) Q sends to B Q A B Q A’s
SendingTime

B responds to A via Q

1) B sends to Q B Q A

2) Q sends to A Q B A Q B’s
SendingTime

Send from A to B *AND* C via Q

1) A sends to Q A Q B

2) Q sends to B Q A B Q A’s
SendingTime

3) A sends to Q A Q C

4) Q sends to C Q A C Q A’s
SendingTime

B *AND* C send to A via Q

1) B sends to Q B Q A

2) Q sends to A Q B A Q B’s
SendingTime

3) C sends to Q C Q A

4) Q sends to A Q C A Q C’s
SendingTime

Note that some fields (e.g. ClOrdID on a New Order Single) must be unique for all orders on a given FIX
session. Thus when using OnBehalfOfCompID (or DeliverToCompID) addressing, a recommended
approach is to prepend OnBehalfOfCompID (or DeliverToCompID) to the original value. Thus if A sends Q
ClOrdID value of "123", then Q could specify ClOrdID of "A-123" when sending the message to C to ensure
uniqueness.

The standard message header format is as follows:

Standard Message Header
Tag FieldName Req'd Comments

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 17 of 68

8 BeginString Y FIXT.1.1 (Always unencrypted, must be first field in
message)

9 BodyLength Y (Always unencrypted, must be second field in message)

35 MsgType Y (Always unencrypted, must be third field in message)

1128 ApplVerID N Indicates application version using a service pack
identifier. The ApplVerID applies to a specific message
occurrence.

1156 ApplExtID N

1129 CstmApplVerID N Used to support bilaterally agreed custom functionality

49 SenderCompID Y (Always unencrypted)

56 TargetCompID Y (Always unencrypted)

115 OnBehalfOfCompID N Trading partner company ID used when sending
messages via a third party (Can be embedded within
encrypted data section.)

128 DeliverToCompID N Trading partner company ID used when sending
messages via a third party (Can be embedded within
encrypted data section.)

90 SecureDataLen N Required to identify length of encrypted section of
message. (Always unencrypted)

91 SecureData N Required when message body is encrypted. Always
immediately follows SecureDataLen field.

34 MsgSeqNum Y (Can be embedded within encrypted data section.)

50 SenderSubID N (Can be embedded within encrypted data section.)

142 SenderLocationID N Sender's LocationID (i.e. geographic location and/or
desk) (Can be embedded within encrypted data section.)

57 TargetSubID N "ADMIN" reserved for administrative messages not
intended for a specific user. (Can be embedded within
encrypted data section.)

143 TargetLocationID N Trading partner LocationID (i.e. geographic location
and/or desk) (Can be embedded within encrypted data
section.)

116 OnBehalfOfSubID N Trading partner SubID used when delivering messages
via a third party. (Can be embedded within encrypted
data section.)

144 OnBehalfOfLocationID N Trading partner LocationID (i.e. geographic location
and/or desk) used when delivering messages via a third
party. (Can be embedded within encrypted data section.)

129 DeliverToSubID N Trading partner SubID used when delivering messages
via a third party. (Can be embedded within encrypted
data section.)

145 DeliverToLocationID N Trading partner LocationID (i.e. geographic location
and/or desk) used when delivering messages via a third

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 18 of 68

party. (Can be embedded within encrypted data section.)

43 PossDupFlag N Always required for retransmitted messages, whether
prompted by the sending system or as the result of a
resend request. (Can be embedded within encrypted data
section.)

97 PossResend N Required when message may be duplicate of another
message sent under a different sequence number. (Can be
embedded within encrypted data section.)

52 SendingTime Y (Can be embedded within encrypted data section.)

122 OrigSendingTime N Required for message resent as a result of a
ResendRequest. If data is not available set to same value
as SendingTime (Can be embedded within encrypted
data section.)

212 XmlDataLen N Required when specifying XmlData to identify the length
of a XmlData message block. (Can be embedded within
encrypted data section.)

213 XmlData N Can contain a XML formatted message block (e.g.
FIXML). Always immediately follows XmlDataLen
field. (Can be embedded within encrypted data section.)

 See Volume 1: FIXML Support

347 MessageEncoding N Type of message encoding (non-ASCII characters) used
in a message's "Encoded" fields. Required if any
"Encoding" fields are used.

369 LastMsgSeqNumProcessed N The last MsgSeqNum value received by the FIX engine
and processed by downstream application, such as
trading system or order routing system. Can be specified
on every message sent. Useful for detecting a backlog
with a counterparty.

component block <HopGrp> N Number of repeating groups of historical "hop"
information. Only applicable if OnBehalfOfCompID is
used, however, its use is optional. Note that some market
regulations or counterparties may require tracking of
message hops.

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 19 of 68

Standard Message trailer
Each message, administrative or application, is terminated by a standard trailer. The trailer is used to segregate
messages and contains the three digit character representation of the Checksum value.

The standard message trailer format is as follows:

Standard Message Trailer
Tag FieldName Req'd Comments

93 SignatureLength N Required when trailer contains signature. Note: Not to
be included within SecureData field

89 Signature N Note: Not to be included within SecureData field

10 CheckSum Y (Always unencrypted, always last field in message)

Components

HopGrp component block

Tag FieldName Req'd Comments

627 NoHops N

 628 HopCompID N

 629 HopSendingTime N

 630 HopRefID N

FIXML Definition for this Component Block– see http://www.fixprotocol.org for details
Refer to the FIXML element HopGrp

http://www.fixprotocol.org/

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 20 of 68

ADMINISTRATIVE MESSAGES
The administrative messages address the utility needs of the protocol. The following section describes each
message and provides the message layout.

Administrative messages will be generated from both sides of the connection.

Heartbeat
 The Heartbeat monitors the status of the communication link and identifies when the last of a string of

messages was not received.

 When either end of a FIX connection has not sent any data for [HeartBtInt] seconds, it will transmit a Heartbeat
message. When either end of the connection has not received any data for (HeartBtInt + “some reasonable
transmission time”) seconds, it will transmit a Test Request message. If there is still no Heartbeat message
received after (HeartBtInt + “some reasonable transmission time”) seconds then the connection should be
considered lost and corrective action be initiated. If HeartBtInt is set to zero then no regular heartbeat messages
will be generated. Note that a test request message can still be sent independent of the value of the HeartBtInt,
which will force a Heartbeat message.

Heartbeats issued as the result of Test Request must contain the TestReqID transmitted in the Test Request
message. This is useful to verify that the Heartbeat is the result of the Test Request and not as the result of a
regular timeout.

The heartbeat format is as follows:

Heartbeat
Tag FieldName Req'd Comments

StandardHeader Y MsgType = 0

112 TestReqID N Required when the heartbeat is the result of a Test
Request message.

StandardTrailer Y

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 21 of 68

Logon
The logon message authenticates a user establishing a connection to a remote system. The logon message must
be the first message sent by the application requesting to initiate a FIX session.

The HeartBtInt (108) field is used to declare the timeout interval for generating heartbeats (same value used by
both sides). The HeartBtInt value should be agreed upon by the two firms and specified by the Logon initiator
and echoed back by the Logon acceptor.

Upon receipt of a Logon message, the session acceptor will authenticate the party requesting connection and
issue a Logon message as acknowledgment that the connection request has been accepted. The
acknowledgment Logon can also be used by the initiator to validate that the connection was established with
the correct party.

The session acceptor must be prepared to immediately begin processing messages after receipt of the Logon.
The session initiator can choose to begin transmission of FIX messages before receipt of the confirmation
Logon, however it is recommended that normal message delivery wait until after the return Logon is received to
accommodate encryption key negotiation.

The confirmation Logon can be used for encryption key negotiation. If a session key is deemed to be weak, a
stronger session key can be suggested by returning a Logon message with a new key. This is only valid for
encryption protocols that allow for key negotiation. (See the FIX Web Site’s Application notes for more
information on a method for encryption and key passing.)

The Logon message can be used to specify the MaxMessageSize supported (i.e. can be used to control
fragmentation rules for very large messages which support fragmentation). It can also be used to specify the
MsgTypes supported for both sending and receiving.

The logon format is as follows:

Logon
Tag FieldName Req'd Comments

StandardHeader Y MsgType = A

98 EncryptMethod Y (Always unencrypted)

108 HeartBtInt Y Note same value used by both sides

95 RawDataLength N Required for some authentication methods

96 RawData N Required for some authentication methods

141 ResetSeqNumFlag N Indicates both sides of a FIX session should reset
sequence numbers

789 NextExpectedMsgSeqNum N Optional, alternative via counterparty bi-lateral
agreement message gap detection and recovery approach
(see "Logon Message NextExpectedMsgSeqNum
Processing" section)

383 MaxMessageSize N Can be used to specify the maximum number of bytes
supported for messages received

component block <MsgTypeGrp> N

464 TestMessageIndicator N Can be used to specify that this FIX session will be
sending and receiving "test" vs. "production" messages.

553 Username N

554 Password N Note: minimal security exists without transport-level

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 22 of 68

encryption.

925 NewPassword N Specifies a new password for the FIX Logon. The new
password is used for subsequent logons.

1400 EncryptedPasswordMethod N

1401 EncryptedPasswordLen N

1402 EncryptedPassword N

1403 EncryptedNewPasswordLen N

1404 EncryptedNewPassword N Encrypted new password- encrypted via the method
specified in the field EncryptedPasswordMethod(1400)

1409 SessionStatus N Session status at time of logon. Field is intended to be
used when the logon is sent as an acknowledgement from
acceptor of the FIX session.

1137 DefaultApplVerID Y The default version of FIX messages used in this session.

1407 DefaultApplExtID N The default extension pack for FIX messages used in this
session

1408 DefaultCstmApplVerID N The default custom application version (dictionary) for
FIX messages used in this session

58 Text N Available to provide a response to logon when used as a
logon acknowledgement from acceptor back to the logon
initiator.

354 EncodedTextLen N Must be set if EncodedText field is specified and must
immediately precede it.

355 EncodedText N Encoded (non-ASCII characters) representation of the
Text field in the encoded format specified via the
MessageEncoding field.

StandardTrailer Y

MsgTypeGrp component block

Tag FieldName Req'd Comments

384 NoMsgTypes N Specifies the number of repeating RefMsgTypes
specified

 372 RefMsgType N Specifies a specific, supported MsgType. Required if
NoMsgTypes is > 0. Should be specified from the point
of view of the sender of the Logon message

 385 MsgDirection N Indicates direction (send vs. receive) of a supported
MsgType. Required if NoMsgTypes is > 0. Should be
specified from the point of view of the sender of the
Logon message

 1130 RefApplVerID N Specifies the service pack release being applied to an
application message.

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 23 of 68

 1406 RefApplExtID N Specified the extension pack being applied to a message.

 1131 RefCstmApplVerID N Specifies a custom extension to a message being applied
at the session level.

 1410 DefaultVerIndicator N Indicates that this Application Version
(RefApplVerID(1130),
RefApplExtID(1406),RefCstmApplVerID(1131)) is the
default for the RefMsgType(372) field.

FIXML Definition for this Component Block– see http://www.fixprotocol.org for details
Refer to the FIXML element MsgTypeGrp

http://www.fixprotocol.org/

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 24 of 68

Test Request
The test request message forces a heartbeat from the opposing application. The test request message checks
sequence numbers or verifies communication line status. The opposite application responds to the Test Request
with a Heartbeat containing the TestReqID.

The TestReqID verifies that the opposite application is generating the heartbeat as the result of Test Request
and not a normal timeout. The opposite application includes the TestReqID in the resulting Heartbeat. Any
string can be used as the TestReqID (one suggestion is to use a timestamp string).

The test request format is as follows:

Test Request

Tag FieldName Req'd Comments

StandardHeader Y MsgType = 1

112 TestReqID Y

StandardTrailer Y

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 25 of 68

Resend Request
The resend request is sent by the receiving application to initiate the retransmission of messages. This function
is utilized if a sequence number gap is detected, if the receiving application lost a message, or as a function of
the initialization process.

The resend request can be used to request a single message, a range of messages or all messages subsequent to
a particular message.

Note: the sending application may wish to consider the message type when resending messages; e.g. if a new
order is in the resend series and a significant time period has elapsed since its original inception, the sender may
not wish to retransmit the order given the potential for changed market conditions. (The Sequence Reset-
GapFill message is used to skip messages that a sender does not wish to resend.)

Note: it is imperative that the receiving application process messages in sequence order, e.g. if message
number 7 is missed and 8-9 received, the application should ignore 8 and 9 and ask for a resend of 7-9, or,
preferably, 7-0 (0 represents infinity). This latter approach is strongly recommended to recover from out of
sequence conditions as it allows for faster recovery in the presence of certain race conditions when both sides
are simultaneously attempting to recover a gap.

• To request a single message: BeginSeqNo = EndSeqNo

• To request a range of messages: BeginSeqNo = first message of range, EndSeqNo = last message of range

• To request all messages subsequent to a particular message: BeginSeqNo = first message of range,
EndSeqNo = 0 (represents infinity) .

The resend request format is as follows:

Resend Request

Tag FieldName Req'd Comments

StandardHeader Y MsgType = 2

7 BeginSeqNo Y

16 EndSeqNo Y

StandardTrailer Y

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 26 of 68

Reject (session-level)
The reject message should be issued when a message is received but cannot be properly processed due to a
session-level rule violation. An example of when a reject may be appropriate would be the receipt of a message
with invalid basic data (e.g. MsgType=&) which successfully passes de-encryption, CheckSum and
BodyLength checks. As a rule, messages should be forwarded to the trading application for business level
rejections whenever possible.

Rejected messages should be logged and the incoming sequence number incremented.

Note: The receiving application should disregard any message that is garbled, cannot be parsed or fails a data
integrity check. Processing of the next valid FIX message will cause detection of a sequence gap and a Resend
Request will be generated. Logic should be included in the FIX engine to recognize the possible infinite resend
loop, which may be encountered in this situation.

Generation and receipt of a Reject message indicates a serious error that may be the result of faulty logic in
either the sending or receiving application.

If the sending application chooses to retransmit the rejected message, it should be assigned a new sequence
number and sent with PossResend=Y.

Whenever possible, it is strongly recommended that the cause of the failure be described in the Text field
(e.g. INVALID DATA - FIELD 35).

If an application-level message received fulfills session-level rules, it should then be processed at a business
message-level. If this processing detects a rule violation, a business-level reject should be issued. Many
business-level messages have specific “reject” messages, which should be used. All others can be rejected at a
business-level via the Business Message Reject message. See Volume 1: "Business Message Reject" message.

Note that in the event a business message is received, fulfills session-level rules, however, the message cannot
be communicated to the business-level processing system, a Business Message Reject with
BusinessRejectReason = “Application not available at this time” should be issued.

Scenarios for session-level Reject:

SessionRejectReason

0 = Invalid tag number

1 = Required tag missing

2 = Tag not defined for this message type

3 = Undefined Tag

4 = Tag specified without a value

5 = Value is incorrect (out of range) for this tag

6 = Incorrect data format for value

7 = Decryption problem

8 = Signature problem

9 = CompID problem

10 = SendingTime accuracy problem

11 = Invalid MsgType

12 = XML Validation error

13 = Tag appears more than once

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 27 of 68

14 = Tag specified out of required order

15 = Repeating group fields out of order

16 = Incorrect NumInGroup count for repeating group

17 = Non “data” value includes field delimiter (SOH character)

99 = Other

(Note other session-level rule violations may exist in which case
SessionRejectReason of Other may be used and further information
may be in Text field.)

The reject format is as follows:

Reject

Tag FieldName Req'd Comments

StandardHeader Y MsgType = 3

45 RefSeqNum Y MsgSeqNum of rejected message

371 RefTagID N The tag number of the FIX field being referenced.

372 RefMsgType N The MsgType of the FIX message being referenced.

1130 RefApplVerID N Recommended when rejecting an application message
that does not explicitly provide ApplVerID (1128) on
the message being rejected. In this case the value from
the DefaultApplVerID(1137) or the default value
specified in the NoMsgTypes repeating group on the
logon message should be provided.

1406 RefApplExtID N Recommended when rejecting an application message
that does not explicitly provide ApplExtID(1156) on the
rejected message. In this case the value from the
DefaultApplExtID(1407) or the default value specified in
the NoMsgTypes repeating group on the logon message
should be provided.

1131 RefCstmApplVerID N Recommended when rejecting an application message
that does not explicitly provide CstmApplVerID(1129)
on the message being rejected. In this case the value from
the DefaultCstmApplVerID(1408) or the default value
specified in the NoMsgTypes repeating group on the
logon message should be provided.

373 SessionRejectReason N Code to identify reason for a session-level Reject
message.

58 Text N Where possible, message to explain reason for rejection

354 EncodedTextLen N Must be set if EncodedText field is specified and must
immediately precede it.

355 EncodedText N Encoded (non-ASCII characters) representation of the
Text field in the encoded format specified via the

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 28 of 68

MessageEncoding field.

StandardTrailer Y

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 29 of 68

Sequence Reset (Gap Fill)
The Sequence Reset message has two modes: Gap Fill mode and Reset mode.

Gap Fill mode
Gap Fill mode is used in response to a Resend Request when one or more messages must be skipped over for
the following reasons:

• During normal resend processing, the sending application may choose not to send a message (e.g. an aged
order).

• During normal resend processing, a number of administrative messages are skipped and not resent (such as
Heart Beats, Test Requests).

Gap Fill mode is indicated by GapFillFlag (tag 123) field = "Y".

If the GapFillFlag field is present (and equal to "Y"), the MsgSeqNum should conform to standard message
sequencing rules (i.e. the MsgSeqNum of the Sequence Reset GapFill mode message should represent the
beginning MsgSeqNum in the GapFill range because the remote side is expecting that next message sequence
number).

Reset mode
Reset mode involves specifying an arbitrarily higher new sequence number to be expected by the receiver of
the Sequence Reset-Reset message, and is used to reestablish a FIX session after an unrecoverable application
failure.

Reset mode is indicated by the GapFillFlag (tag 123) field = "N" or if the field is omitted.

If the GapFillFlag field is not present (or set to N), it can be assumed that the purpose of the Sequence Reset
message is to recover from an out-of-sequence condition. In Sequence Reset - Reset mode, the MsgSeqNum in
the header should be ignored (i.e. the receipt of a Sequence Reset - Reset mode message with an out of
sequence MsgSeqNum should not generate resend requests). Sequence Reset – Reset should NOT be used as
a normal response to a Resend Request (use Sequence Reset – Gap Fill mode). The Sequence Reset – Reset
should ONLY be used to recover from a disaster situation which cannot be recovered via the use of Sequence
Reset – Gap Fill. Note that the use of Sequence Reset – Reset may result in the possibility of lost messages.

Rules for processing all Sequence Reset messages

The sending application will initiate the Sequence Reset. The message in all situations specifies NewSeqNo
to reset to as the value of the next sequence number to be expected by the message receipient immediately
following the messages and/or sequence numbers being skipped.

The Sequence Reset can only increase the sequence number. If a sequence reset is received attempting to
decrease the next expected sequence number the message should be rejected and treated as a serious error. It is
possible to have multiple Resend Requests issued in a row (e.g. 5 to 10 followed by 5 to 11). If sequence
number 8, 10, and 11 represent application messages while the 5-7 and 9 represent administrative messages, the
series of messages as result of the Resend Request may appear as Sequence Reset-GapFill mode with
NewSeqNo of 8, message 8, Sequence Reset-GapFill with NewSeqNo of 10, and message 10. This could then
followed by Sequence Reset-GapFill with NewSeqNo of 8, message 8, Sequence Reset-GapFill with
NewSeqNo of 10, message 10, and message 11. One must be careful to ignore the duplicate Sequence Reset-
GapFill mode which is attempting to lower the next expected sequence number. This can be detected by
checking to see if its MsgSeqNum is less than expected. If so, the Sequence Reset-GapFill mode is a duplicate
and should be discarded.

The Sequence Reset format is as follows:

Sequence Reset

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 30 of 68

Tag FieldName Req'd Comments

StandardHeader Y MsgType = 4

123 GapFillFlag N

36 NewSeqNo Y

StandardTrailer Y

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 31 of 68

Logout
The logout message initiates or confirms the termination of a FIX session. Disconnection without the exchange
of logout messages should be interpreted as an abnormal condition.

Before actually closing the session, the logout initiator should wait for the opposite side to respond with a
confirming logout message. This gives the remote end a chance to perform any Gap Fill operations that may be
necessary. The session may be terminated if the remote side does not respond in an appropriate timeframe.

After sending the Logout message, the logout initiator should not send any messages unless requested to do so
by the logout acceptor via a ResendRequest.

The logout format is as follows:

Logout

Tag FieldName Req'd Comments

StandardHeader Y MsgType = 5

1409 SessionStatus N Session status at time of logout.

58 Text N

354 EncodedTextLen N Must be set if EncodedText field is specified and must
immediately precede it.

355 EncodedText N Encoded (non-ASCII characters) representation of the
Text field in the encoded format specified via the
MessageEncoding field.

StandardTrailer Y

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 32 of 68

CheckSum Calculation

The checksum of a FIX message is calculated by summing every byte of the message up to but not including the
checksum field itself. This checksum is then transformed into a modulo 256 number for transmission and
comparison. The checksum is calculated after all encryption is completed, i.e. the message as transmitted between
parties is processed.

For transmission, the checksum must be sent as printable characters, so the checksum is transformed into three
ASCII digits.

For example, if the checksum has been calculated to be 274 then the modulo 256 value is 18 (256 + 18 = 274). This
value would be transmitted a |10=018| where "10="is the tag for the checksum field.

A sample code fragment to generate the checksum field is as follows:

char *GenerateCheckSum(char *buf, long bufLen)

{

 static char tmpBuf[4];

 long idx;

 unsigned int cks;

 for(idx = 0L, cks = 0; idx < bufLen; cks += (unsigned int)buf[idx++]);

 sprintf(tmpBuf, “%03d”, (unsigned int)(cks % 256));

 return(tmpBuf);

}

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 33 of 68

FIXT Header Mapping Table
Tag FieldName Level Req'd Encrypt

-able?
Order of
the field
within a

FIX
tag=value
message

Status Comments Encoding
Use

Session Use
(Y- used in

session,
D-

Deprecated)

Application
Use (Y- used

by
Application;
C- Compatibility

with earlier
version,E-Used in
Appl level error

reporting)

FIX 4.0
Std

Header

FIX 4.1
Std

Header

FIX 4.2
Std

Header

FIX 4.3
Std

Header

FIX 4.4
Std

Header

FIXT.1.1
Session
Header

FIX.5.
0

Applic
ation

FIXT.1.1 SESSION HEADER

8 BeginString ENCD
&&
SESS

Y N 1 Identifies the
session level
version and
the version of
encoding.
Currently
FIXT.1.1

Y Y Y Y Y Y Y Y

9 BodyLength ENCD Y N 2 Y Y Y Y Y Y Y

35 MsgType ENCD
&&
SESS
&&
APPL

Y N 3 Business
Reject
Message
references the
MsgType
field.

Y Y Y Y Y Y Y Y Y

49 SenderCompID SESS Y N 4 Y Y C Y Y Y Y Y Y

56 TargetCompID SESS Y N 5 Y Y C Y Y Y Y Y Y

FIXT.1.1 Application Version FIelds

1128 ApplVerID APPL N 6 If
provided-

the
ApplVerI
D must be

the 6th
field in

the
message

Indicates application version using a
service pack identifier. The ApplVerID
applies to a specific message occurrence.
Not used on Session Level Messages

Y Y

1156 ApplExtID APPL N New as of
FIXT.1.1
Session
Service
Pack 1

Identifies the Extension Pack which is to
be applied to the FIX version specified in
the ApplVerID.

Y Y

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 34 of 68

Tag FieldName Level Req'd Encrypt
-able?

Order of
the field
within a

FIX
tag=value
message

Status Comments Encoding
Use

Session Use
(Y- used in

session,
D-

Deprecated)

Application
Use (Y- used

by
Application;
C- Compatibility

with earlier
version,E-Used in
Appl level error

reporting)

FIX 4.0
Std

Header

FIX 4.1
Std

Header

FIX 4.2
Std

Header

FIX 4.3
Std

Header

FIX 4.4
Std

Header

FIXT.1.1
Session
Header

FIX.5.
0

Applic
ation

1129 CstmApplVerI
D

APPL N Used to identify a definition for support
bilaterally agreed custom functionality
which specifies extensions and or
restrictions to the version of FIX specified
in ApplVerID and ApplExtID.

Y Y

115 OnBehalfOfCo
mpID

SESS N Trading partner company ID used when
sending messages via a third party

C Y Y Y Y Y Y

128 DeliverToComp
ID

SESS N Trading partner company ID used when
sending messages via a third party

C Y Y Y Y Y Y

90 SecureDataLen ENCD N N Deprecate
d as of

FIXT.1.1

Required to
identify
length of
encrypted
section of
message.
(Always
unencrypted)

Y D[i2] Y Y Y Y Y D[i2]

91 SecureData ENCD N Deprecate
d as of

FIXT.1.1

Required
when
message body
is encrypted.
Always
immediately
follows
SecureDataLe
n field.

Y D[i2] Y Y Y Y Y D[i2]

34 MsgSeqNum SESS Y C,E Y Y Y Y Y Y

50 SenderSubID SESS N C Y Y Y Y Y Y

142 SenderLocation
ID

SESS N Sender's LocationID (i.e. geographic
location and/or desk)

C Y Y Y Y Y

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 35 of 68

Tag FieldName Level Req'd Encrypt
-able?

Order of
the field
within a

FIX
tag=value
message

Status Comments Encoding
Use

Session Use
(Y- used in

session,
D-

Deprecated)

Application
Use (Y- used

by
Application;
C- Compatibility

with earlier
version,E-Used in
Appl level error

reporting)

FIX 4.0
Std

Header

FIX 4.1
Std

Header

FIX 4.2
Std

Header

FIX 4.3
Std

Header

FIX 4.4
Std

Header

FIXT.1.1
Session
Header

FIX.5.
0

Applic
ation

57 TargetSubID SESS N "ADMIN" reserved for administrative
messages not intended for a specific user.

C Y Y Y Y Y Y

143 TargetLocationI
D

SESS N Trading partner LocationID (i.e.
geographic location and/or desk)

C Y Y Y Y Y

116 OnBehalfOfSub
ID

SESS N Trading partner SubID used when
delivering messages via a third party.

C Y Y Y Y Y Y

144 OnBehalfOfLoc
ationID

SESS N Trading partner LocationID (i.e.
geographic location and/or desk) used
when delivering messages via a third party.

C Y Y Y Y Y

129 DeliverToSubI
D

SESS N Trading partner SubID used when
delivering messages via a third party.

C Y Y Y Y Y Y

145 DeliverToLocat
ionID

SESS N Trading partner LocationID (i.e.
geographic location and/or desk) used
when delivering messages via a third party.

C Y Y Y Y Y

43 PossDupFlag SESS N Always required for
retransmitted messages,
whether prompted by the
sending system or as the
result of a resend request.

Y Y Y Y Y Y Y

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 36 of 68

Tag FieldName Level Req'd Encrypt
-able?

Order of
the field
within a

FIX
tag=value
message

Status Comments Encoding
Use

Session Use
(Y- used in

session,
D-

Deprecated)

Application
Use (Y- used

by
Application;
C- Compatibility

with earlier
version,E-Used in
Appl level error

reporting)

FIX 4.0
Std

Header

FIX 4.1
Std

Header

FIX 4.2
Std

Header

FIX 4.3
Std

Header

FIX 4.4
Std

Header

FIXT.1.1
Session
Header

FIX.5.
0

Applic
ation

97 PossResend APPL N Enhance
Documen
tation to
be clear

that
PossRese

nd is
applicatio

n level
across all
versions
of FIX

[i6]

Required when message may be duplicate
of another message sent under a different
sequence number. PossResend is used at
the application level. It is provided with
the standard header definition for
backward compatibility.

Y Y Y Y Y Y Y

52 SendingTime SESS Y Y Y Y Y Y Y Y Y

122 OrigSendingTi
me

SESS N Required for message resent
as a result of a
ResendRequest. If data is
not available set to same
value as SendingTime

Y Y Y Y Y Y Y Y

212 XmlDataLen APPL N Required when specifying XmlData to
identify the length of a XmlData message
block.

Y Y Y Y Y

213 XmlData APPL N Can contain a XML formatted message
block (e.g. FIXML). Always immediately
follows XmlDataLen field. See
Volume 1: FIXML Support

Y Y Y Y Y

347 MessageEncodi
ng

ENCD N Type of message encoding (non-ASCII
characters) used in a message’s "Encoded"
fields. Required if any "Encoding" fields
are used.

Y Y Y Y Y

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 37 of 68

Tag FieldName Level Req'd Encrypt
-able?

Order of
the field
within a

FIX
tag=value
message

Status Comments Encoding
Use

Session Use
(Y- used in

session,
D-

Deprecated)

Application
Use (Y- used

by
Application;
C- Compatibility

with earlier
version,E-Used in
Appl level error

reporting)

FIX 4.0
Std

Header

FIX 4.1
Std

Header

FIX 4.2
Std

Header

FIX 4.3
Std

Header

FIX 4.4
Std

Header

FIXT.1.1
Session
Header

FIX.5.
0

Applic
ation

369 LastMsgSeqNu
mProcessed

SESS N The last MsgSeqNum value
received by the FIX engine
and processed by
downstream application,
such as trading system or
order routing system. Can
be specified on every
message sent. Useful for
detecting a backlog with a
counterparty.

Y Y Y Y Y Y

370 OnBehalfOfSen
dingTime

SESS N Deprecate
d as of
FIX.4.3;
Removed

as of
FIX.4.4

Field was added in
FIX.4.2 then deprecated in
FIX.4.3 i[5]

D Y D

 HopGrp
Component
Block

SESS N Y Y Y Y Y

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 38 of 68

FIXT Trailer Mapping Table
Tag FieldName Level Req'

d
Encrypt-

able?
Order-

required
ordering

of the
field

within a
FIX

tag=value
message

Status Comments Encodin
g Use

Session Use
(Y- used in
session, D-

Deprecated)

Application
Use (Y- used

by
Application;

C-
Compatibility
with earlier
version,E-

Used in Appl
level error
reporting)

FIX 4.0
Std

Trailer

FIX 4.1
Std

Trailer

FIX 4.2
Std

Trailer

FIX 4.3
Std

Trailer

FIX 4.4
Std

Trailer

FIXT.1.1
Session
Trailer

FIX.5.0
Applica

tion

FIXT.1.1 SESSION TRAILER

93 SignatureLength ENCD
&&
SESS

Y N 1 Deprecate
d as of

FIXT.1.1

 Required
when trailer
contains
signature.
Note: Not to
be included
within
SecureData
field

Y D Y Y Y Y Y D

89 Signature ENCD Y N 2 Deprecate
d as of

FIXT.1.1

Note: Not to
be included
within
SecureData
field

Y D Y Y Y Y Y D

10 CheckSum ENCD
&&
SESS
&&
APPL

Y N 3 (Always
unencrypted,
always last
field in
message).

Y Y Y Y Y Y Y

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 39 of 68

FIX Session-level Test Cases and Expected Behaviors

Applicability
This document was last revised September 20, 2002 at which time FIX version 4.3 with Errata 20020930 was the latest version of the FIX Protocol. Note that
future amendments to this document may be found on the FIX website and any version of this document published on a later date takes precedence over this
version of the document. This document is applicable to all versions of FIX 4.X (4.0, 4.1, 4.2, 4.3, and 4.4) except where explicitly indicated.

When to send a Logout vs. when to just disconnect
In general a Logout message should always be sent prior to shutting down a connection. If the Logout is being sent due to an error condition, the Text field of
the Logout should provide a descriptive reason, so that operational support of the remote FIX system can diagnosis the problem. There are exceptions, when it is
recommended that a Logout message not be sent, these include:

• If during a logon either the SenderCompID, TargetCompID or IP address of the session initiator is invalid, it is recommended that the session be
immediately terminated and no Logout message sent. This login attempt might be an unauthorized attempt to break into your system; hence one does
not want to divulge any information about one’s FIX system, such as: which SenderCompID/TargetCompID values are valid or which version of FIX is
supported.

• If during a Logon one receives a second connection attempt while a valid FIX session is already underway for that same SenderCompID, it is
recommended that the session acceptor immediately terminate the second connection attempt and not send a Logout message. Sending a Logout
message runs the risk of interfering with and possibly adversely affecting the current active FIX connection. For example, in some FIX system
implementations, sending a Logout message might consume a sequence number that would cause an out of sequence condition for the established FIX
session.

In all other cases, if sending a Logout does not create risk or violate security, a Logout message should be sent with a descriptive text message.

When to send a Session Reject vs. when to ignore the message
The following excerpt is taken from the Reject message definition within the FIX Protocol specification:

Note: The receiving application should disregard any message that is garbled, cannot be parsed or fails a data integrity check. Processing of the next valid
FIX message will cause detection of a sequence gap and a Resend Request will be generated. Logic should be included in the FIX engine to recognize the
possible infinite resend loop, which may be encountered in this situation.

The FIX Protocol takes the optimistic view; it presumes that a garbled message is received due to a transmission error rather than a FIX system problem.
Therefore, if a Resend Request is sent the garbled message will be retransmitted correctly. If a message is not considered garbled then it is recommended that a
session level Reject message be sent.

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 40 of 68

What constitutes a garbled message
• BeginString (tag #8) is not the first tag in a message or is not of the format 8=FIXT.n.m.

• BodyLength (tag #9) is not the second tag in a message or does not contain the correct byte count.

• MsgType (tag #35) is not the third tag in a message.

• Checksum (tag #10) is not the last tag or contains an incorrect value.

If the MsgSeqNum(tag #34) is missing a logout message should be sent terminating the FIX Connection, as this indicates a serious application error that is likely
only circumvented by software modification.

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 41 of 68

FIX Session-level State Matrix

Precedence State Initiator Acceptor Description

1 Disconnected-
No Connection
Today

Y Y Currently disconnected, have not attempted to establish a connection “today”, and no MsgSeqNum
have been consumed (next connection “today” will start at MsgSeqNum of 1)

2 Disconnected-
Connection
Today

Y Y Currently disconnected, have attempted to establish a connection “today” and thus MsgSeqNum
have been consumed (next connection “today” will start at MsgSeqNum of (last + 1))

3 Detect Broken
Network
Connection

Y Y While connected, detect a broken network connection (e.g. TCP socket closed). Disconnect the
network connection and “shutdown” configuration for this session.

4 Awaiting
Connection

N Y Session acceptor Logon awaiting network connection from counterparty

5 Initiate
Connection

Y N Session initiator Logon establishing network connection with counterparty

6 Network
Connection
Established

Y Y Network connection established between both parties

7 Initiation Logon
Sent

Y N Session initiator Logon send Logon message.

*** Exception: 24hr sessions.

8 Initiation Logon
Received

N Y Session acceptor Logon receive counterparty’s Logon message.

*** Exception: 24hr sessions.

9 Initiation Logon
Response

N Y Session acceptor Logon respond to counterparty’s Logon message with Logon message to
handshake

10 Handle
ResendRequest

Y Y Receive and respond to counterparty’s ResendRequest sending requested messages and/or
SequenceReset-Gap Fill messages for the range of MsgSeqNum requested. Updated to include
rejecting Resend Request received with MsgSeqNum that is <= LastSeqNum processed.

11 Receive
MsgSeqNum Too
High

Y Y Receive too high of MsgSeqNum from counterparty, queue message, and send ResendRequest

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 42 of 68

12 Awaiting/Proces
sing Response to
ResendRequest

Y Y Process requested MsgSeqNum PossDupFlag=Y resent messages and/or SequenceReset-Gap Fill
messages from counterparty. Queue incoming messages with MsgSeqNum too high

13 No messages
received in
Interval

Y Y No inbound messages (non-garbled) received in (HeartBeatInt + “reasonable period of time”),
send TestRequest

14 Awaiting/Proces
sing Response to
TestRequest

Y Y Process inbound messages. Reset heart beat interval-related timer when ANY inbound message
(non-garbled) is received

15 Receive Logout
message

Y Y Receive Logout message from counterparty initiating logout/disconnect. If MsgSeqNum too high,
send ResendRequest. If sent, wait a reasonable period of time for complete response to
ResendRequest. Note that depending upon the reason for the Logout, the counterparty may be
unable to fulfill the request. Send Logout message as response and wait a reasonable period of
time for counterpaty to disconnect the network connection. Note counterparty may send a
ResendRequest message if Logout message response has MsgSeqNum too high and then re-
initiate the Logout process.

16 Initiate Logout
Process

Y Y Identify condition or reason to gracefully disconnect (e.g. end of “day”, no response after multiple
TestRequest messages, too low MsgSeqNum, etc.). Send Logout message to counterparty. Wait
a reasonable period of time for Logout response. During this time handle “new” inbound
messages and/or ResendRequest if possible. Note that some logout/termination conditions (e.g.
loss of database/message safe-store) may require immediate termination of the network connection
following the initial send of the Logout message. Disconnect the network connection and
“shutdown” configuration for this session.

17 Active/Normal
Session

Y Y Network connection established, Logon message exchange successfully completed, inbound and
outbound MsgSeqNum are in sequence as expected, and Heartbeat or other messages are received
within (HeartBeatInt + “reasonable period of time”).

18 Waiting for
Logon ack

Y N Session initiator waiting for session acceptor to send back Logon ACK.

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 43 of 68

FIX Logon Process State Transition Diagram

Session Initiator (e.g. buyside)

Action

Session Acceptor (e.g. sellside)

Action

Session Initiator (e.g. buyside)

State

Session Acceptor (e.g. sellside)

State

Start • Disconnected-No Connection
Today

• Disconnected-Connection Today

Awaiting Connection

Connect Initiate Connection

(Possible) Detect Broken Network
Connection

Awaiting Connection

 Accept Connection Network Connection Established Network Connection Established

Initiate Logon Initiation Logon Sent Network Connection Established

 Receive Initiation Logon Initiation Logon Sent Initiation Logon Received

 Send Initiation Logon Response Initiation Logon Sent Initiation Logon Response

 (possible) Initiate Logout Process
(e.g. if MsgSeqNum too low)

(Possible) Receive MsgSeqNum Too
High

 (Possible) Send ResendRequest Initiation Logon Response

(Possible) Receive MsgSeqNum Too
High

Receive Initiation Logon Response (Possible) Active/Normal Session

Initiation Logon Response

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 44 of 68

(Possible) Initiate Logout Process
(e.g. if MsgSeqNum too low)

(Possible) Send ResendRequest (Possible) Active/Normal Session

(Possible) Receive MsgSeqNum Too
High

(Possible) Active/Normal Session

(Possible) Handle ResendRequest

 Active/Normal Session Active/Normal Session

FIX Logout Process State Transition Diagram

Logout Initiator: Action Logout Acceptor Action Logout Initiator State Logout Acceptor State

Start • Active/Normal Session

• No messages received in Interval

• Awaiting/Processing Response to
TestRequest

• Active/Normal Session

• No messages received in Interval

• Initiation Logon Sent

• Awaiting/Processing Response to
TestRequest

• Awaiting validation of logon

• Receive MsgSeqNum Too High

• Awaiting/Processing Response to
ResendRequest

• Initiate Logout Process

• Waiting for Logon ack

Send Logout message Logout Pending

 Receive Logout message Logout Pending Logout Pending

(Possible) Receive MsgSeqNum Too
High

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 45 of 68

 Send Logout response Logout Pending Awaiting Disconnect

 (Possible) Send ResendRequest Logout Pending (Possible) Awaiting / Processing
Response to ResendRequest

(Possible) receive ResendRequest (Possible) Awaiting / Processing
Response to ResendRequest

(Possible) Awaiting Response to
ResendRequest

Receive Logout Response Disconnected-Connection Today Awaiting Disconnect

Disconnect Disconnected-Connection Today Disconnected-Connection Today

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 46 of 68

Test cases
These test cases are from the perspective of the FIX system being tested. The FIX system receives the “Condition / Stimulus” and is expected to take the
appropriate action as defined by “Expected Behavior”.

Buyside-oriented (session initiator) Logon and session initiation test case
Ref
ID

Pre-
condition

Test case Mandatory/
Optional

Condition/Stimulus Expected Behavior

a. Establish Network connection Successfully open TCP socket with
counterparty

b. Send Logon message Send Logon message

c. Valid Logon message as response is
received

If MsgSeqNum is too high then send
Resend Request

d. Invalid Logon message is received 1. Generate an "error" condition in
test output.

2. (Optional) Send Reject message
with RefMsgSeqNum referencing
Logon message’s MsgSeqNum
with Text referencing error
condition

3. Send Logout message with Text
referencing error condition

4. Disconnect

1B Connect and Send Logon
message

Mandatory

e. Receive any message other than a Logon
message.

1. Log an error “first message not a
logon”

2. (Optional) Send Reject message
with RefMsgSeqNum referencing
message’s MsgSeqNum with Text
referencing error condition

3. Send Logout message with Text
referencing error condition

4. Disconnect

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 47 of 68

Sellside-oriented (session acceptor) Logon and session initiation test case
Ref
ID

Pre-
condition

Test case Mandatory/
Optional

Condition/Stimulus Expected Behavior

a. Valid Logon message 1. Respond with Logon response
message

2. If MsgSeqNum is too high then
send Resend Request

b. Logon message received with duplicate
identity (i.e. same IP, port, SenderCompID,
TargetCompID, etc. as existing connection)

1. Generate an "error" condition in
test output.

2. Disconnect without sending a
message (note sending a Reject or
Logout would consume a
MsgSeqNum)

c. Logon message received with
unauthenticated/non-configured identity (i.e.
invalid SenderCompID, invalid
TargetCompID, invalid source IP address,
etc. vs. system configuration)

1. Generate an "error" condition in
test output.

2. Disconnect without sending a
message (note sending a Reject or
Logout would consume a
MsgSeqNum)

1S Receive Logon message Mandatory

d. Invalid Logon message 1. Generate an "error" condition in
test output.

2. (Optional) Send Reject message
with RefMsgSeqNum referencing
Logon message’s MsgSeqNum
with Text referencing error
condition

3. Send Logout message with Text
referencing error condition

4. Disconnect

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 48 of 68

 Receive any message other
than a Logon message

Mandatory First message received is not a Logon
message.

1. Log an error “first message not a
logon”

2. Disconnect

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 49 of 68

Test cases applicable to all FIX systems
Ref
ID

Pre-
condition

Test case Mandatory/
Optional

Condition/Stimulus Expected Behavior

a. MsgSeqNum received as expected Accept MsgSeqNum for the message

b. MsgSeqNum higher than expected Respond with Resend Request
message

c. MsgSeqNum lower than expected without
PossDupFlag set to Y

Exception: SeqReset-Reset

1. Whenever possible it is
recommended that FIX engine
attempt to send a Logout message
with a text message of
“MsgSeqNum too low, expecting
X but received Y”

2. (optional) Wait for Logout
message response (note likely
will have inaccurate MsgSeqNum)
or wait 2 seconds whichever
comes first

3. Disconnect

4. Generate an "error" condition in
test output.

2 Receive Message Standard
Header

Mandatory

d. Garbled message received 1. Consider garbled and ignore
message (do not increment
inbound MsgSeqNum) and
continue accepting messages.

2. Generate a "warning" condition in
test output.

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 50 of 68

e. PossDupFlag set to Y; OrigSendingTime
specified is less than or equal to
SendingTime and MsgSeqNum lower than
expected

Note: OrigSendingTime should be earlier
than SendingTime unless the message is
being resent within the same second during
which it was sent.

1. Check to see if MsgSeqNum has
already been received.

2. If already received then ignore
the message, otherwise accept
and process the message.

f. PossDupFlag set to Y; OrigSendingTime
specified is greater than SendingTime and
MsgSeqNum as expected

Note: OrigSendingTime should be earlier
than SendingTime unless the message is
being resent within the same second during
which it was sent.

1. Send Reject (session-level)
message referencing inaccurate
SendingTime (>= FIX 4.2:
SessionRejectReason =
"SendingTime acccuracy
problem")

2. Increment inbound MsgSeqNum

3. Optional

• Send Logout message
referencing inaccurate
SendingTime value

• (optional) Wait for Logout
message response (note
likely will have inaccurate
SendingTime) or wait 2
seconds whichever comes
first

• Disconnect

Generate an "error" condition in test
output.

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 51 of 68

g. PossDupFlag set to Y and
OrigSendingTime not specified

Note: Always set OrigSendingTime to the
time when the message was originally sent-
not the present SendingTime and set
PossDupFlag = “Y” when responding to a
Resend Request

1. Send Reject (session-level)
message referencing missing
OrigSendingTime (>= FIX 4.2:
SessionRejectReason = "Required
tag missing")

2. Increment inbound MsgSeqNum

h. BeginString value received as expected
and specified in testing profile and matches
BeginString on outbound messages.

Accept BeginString for the message

i. BeginString value (e.g. "FIX.4.2") received
did not match value expected and specified
in testing profile or does not match
BeginString on outbound messages.

1. Send Logout message
referencing incorrect BeginString
value

2. (optional) Wait for Logout
message response (note likely
will have incorrect BeginString)
or wait 2 seconds whichever
comes first

3. Disconnect

4. Generate an "error" condition in
test output.

j. SenderCompID and TargetCompID values
received as expected and specified in testing
profile.

Accept SenderCompID and
TargetCompID for the message

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 52 of 68

k. SenderCompID and TargetCompID values
received did not match values expected and
specified in testing profile.

1. Send Reject (session-level)
message referencing invalid
SenderCompID or TargetCompID
(>= FIX 4.2:
SessionRejectReason = "CompID
problem")

2. Increment inbound MsgSeqNum

3. Send Logout message
referencing incorrect
SenderCompID or TargetCompID
value

4. (optional) Wait for Logout
message response (note likely
will have incorrect
SenderCompID or
TargetCompID) or wait 2 seconds
whichever comes first

5. Disconnect

6. Generate an "error" condition in
test output.

l. BodyLength value received is correct. Accept BodyLength for the message

m. BodyLength value received is not correct. 1. Consider garbled and ignore
message (do not increment
inbound MsgSeqNum) and
continue accepting messages

2. Generate a "warning" condition in
test output.

n. SendingTime value received is specified in
UTC (Universal Time Coordinated also
known as GMT) and is within a reasonable
time (e.g. 2 minutes) of atomic clock-based
time.

Accept SendingTime for the message

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 53 of 68

o. SendingTime value received is either not
specified in UTC (Universal Time
Coordinated also known as GMT) or is not
within a reasonable time (e.g. 2 minutes) of
atomic clock-based time.

Rationale:

Verify system clocks on both sides are in
sync and that SendingTime must be current
time

1. Send Reject (session-level)
message referencing inaccurate
SendingTime (>= FIX 4.2:
SessionRejectReason =
"SendingTime acccuracy
problem")

2. Increment inbound MsgSeqNum

3. Send Logout message
referencing inaccurate
SendingTime value

4. (optional) Wait for Logout
message response (note likely
will have inaccurate
SendingTime) or wait 2 seconds
whichever comes first

5. Disconnect

6. Generate an "error" condition in
test output.

p. MsgType value received is valid (defined
in spec or classified as user-defined).

Accept MsgType for the message

q. MsgType value received is not valid
(defined in spec or classified as user-
defined).

1. Send Reject (session-level)
message referencing invalid
MsgType (>= FIX 4.2:
SessionRejectReason =
"Invalid MsgType")

2. Increment inbound
MsgSeqNum

3. Generate a "warning"
condition in test output.

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 54 of 68

r. MsgType value received is valid (defined
in spec or classified as user-defined) but not
supported or registered in testing profile.

1) If < FIX 4.2

a) Send Reject (session-level)
message referencing valid
but unsupported MsgType

2) If >= FIX 4.2

a) Send Business Message
Reject message referencing
valid but unsupported
MsgType (>= FIX 4.2:
BusinessRejectReason =
"Unsupported Message
Type")

3) Increment inbound MsgSeqNum

4) Generate a "warning" condition in
test output.

s. BeginString, BodyLength, and MsgType
are first three fields of message.

Accept the message

t. BeginString, BodyLength, and MsgType
are not the first three fields of message.

1. Consider garbled and ignore
message (do not increment
inbound MsgSeqNum) and
continue accepting messages

2. Generate a "warning" condition in
test output.

a. Valid CheckSum Accept Message 3 Receive Message Standard
Trailer

Mandatory

b. Invalid CheckSum 1. Consider garbled and ignore
message (do not increment
inbound MsgSeqNum) and
continue accepting messages

2. Generate a "warning" condition in
test output.

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 55 of 68

c. Garbled message 1. Consider garbled and ignore
message (do not increment
inbound MsgSeqNum) and
continue accepting messages

2. Generate a "warning" condition in
test output.

d. CheckSum is last field of message, value
has length of 3, and is delimited by <SOH>.

Accept Message

e. CheckSum is not the last field of message,
value does not have length of 3, or is not
delimited by <SOH>.

1. Consider garbled and ignore
message (do not increment
inbound MsgSeqNum) and
continue accepting messages

2. Generate a "warning" condition in
test output.

a. No data sent during preset heartbeat
interval (HeartBeatInt field)

Send Heartbeat message 4 Send Heartbeat message Mandatory

b. A Test Request message is received Send Heartbeat message with Test
Request message's TestReqID

5 Receive Heartbeat message Mandatory Valid Heartbeat message Accept Heartbeat message

6 Send Test Request Mandatory No data received during preset heartbeat
interval (HeartBeatInt field) + "some
reasonable period of time" (use 20% of
HeartBeatInt field)

1. Send Test Request message

2. Track and verify that a Heartbeat
with the same TestReqID is
received (may not be the next
message received)

7 Receive Reject message Mandatory Valid Reject message 1. Increment inbound MsgSeqNum

2. Continue accepting messages

8 Receive Resend Request
message

Mandatory Valid Resend Request Respond with application level
messages and SequenceReset-Gap
Fill for admin messages in requested
range according to "Message
Recovery" rules.

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 56 of 68

9 Synchronize sequence
numbers

Optional Application failure Send Sequence Reset - Reset
message or manually reset to 1 out-of-
band.

a. Receive Sequence Reset (Gap Fill)
message with NewSeqNo > MsgSeqNum

and

MsgSeqNum > than expect sequence number

Issue Resend Request to fill gap
between last expected MsgSeqNum &
received MsgSeqNum.

b. Receive Sequence Reset (Gap Fill)
message with NewSeqNo > MsgSeqNum

and

MsgSeqNum = to expected sequence number

Set next expected sequence number =
NewSeqNo

c. Receive Sequence Reset (Gap Fill)
message with NewSeqNo > MsgSeqNum

and

MsgSeqNum < than expected sequence
number

and

 PossDupFlag = “Y”

Ignore message

10 Receive Sequence Reset
(Gap Fill)

Mandatory

d. Receive Sequence Reset (Gap Fill)
message with NewSeqNo > MsgSeqNum

and

MsgSeqNum < than expected sequence
number

and

 without PossDupFlag = “Y”

1) If possible send a Logout
message with text of
“MsgSeqNum too low, expecting
X received Y,” prior to
disconnecting FIX session.

2) (optional) Wait for Logout
message response (note likely
will have inaccurate MsgSeqNum)
or wait 2 seconds whichever
comes first

3) Disconnect

4) Generate an "error" condition in
test output

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 57 of 68

 e. Receive Sequence Reset (Gap Fill)
message with NewSeqNo <= MsgSeqNum

and

MsgSeqNum = to expected sequence number

Send Reject (session-level) message
with message “attempt to lower
sequnce number, invalid value
NewSeqNum=<x>”

a. Receive Sequence Reset (reset) message
with NewSeqNo > than expected sequence
number

1) Accept the Sequence Reset
(Reset) message without regards
to its MsgSeqNum

2) Set expected sequence number
equal to NewSeqNo

b. Receive Sequence Reset (reset) message
with NewSeqNo = to expected sequence
number

1) Accept the Sequence Reset
(Reset) message without regards
to its MsgSeqNum

2) Generate a "warning" condition in
test output.

11 Receive Sequence Reset
(Reset)

Mandatory

c. Receive Sequence Reset (reset) message
with NewSeqNo < than expected sequence
number

1) Accept the Sequence Reset
(Reset) message without regards
to its MsgSeqNum

2) Send Reject (session-level)
message referencing invalid
MsgType (>= FIX 4.2:
SessionRejectReason = "Value is
incorrect (out of range) for this
tag")

3) Do NOT Increment inbound
MsgSeqNum

4) Generate an "error" condition in
test output

5) Do NOT lower expected
sequence number.

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 58 of 68

12 Initiate logout process Mandatory Initiate Logout 1) Send Logout message

2) Wait for counterparty to respond
with Logout message up to 10
seconds (note may not be
received if communications
problem exists). If not received,
generate a “warning” condition in
test output.

3) Disconnect

a. Receive valid Logout message in response
to a solicited logout process

Disconnect without sending a message 13 Receive Logout message Mandatory

b. Receive valid Logout message
unsolicitied

1. Send Logout response message

2. Wait for counterparty to
disconnect up to 10 seconds. If
max exceeded, disconnect and
generate an “error” condition in
test output.

a. Receive field identifier (tag number) not
defined in specification.

Exception: undefined tag used is specified in
testing profile as user-defined.

1. Send Reject (session-level)
message referencing invalid tag
number (>= FIX 4.2:
SessionRejectReason = "Invalid
tag number")

2. Increment inbound MsgSeqNum

3. Generate an "error" condition in
test output.

14 Receive application or
administrative message

Mandatory

b. Receive message with a required field
identifier (tag number) missing.

1. Send Reject (session-level)
message referencing required tag
missing (>= FIX 4.2:
SessionRejectReason = "Required
tag missing")

2. Increment inbound MsgSeqNum

3. Generate an "error" condition in
test output.

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 59 of 68

c. Receive message with field identifier (tag
number) which is defined in the specification
but not defined for this message type.

Exception: undefined tag used is specified in
testing profile as user-defined for this
message type.

1. Send Reject (session-level)
message referencing tag not
defined for this message type (>=
FIX 4.2: SessionRejectReason =
"Tag not defined for this message
type")

2. Increment inbound MsgSeqNum

3. Generate an "error" condition in
test output.

d. Receive message with field identifier (tag
number) specified but no value (e.g.
"55=<SOH>" vs. "55=IBM<SOH>").

1. Send Reject (session-level)
message referencing tag specified
without a value (>= FIX 4.2:
SessionRejectReason = "Tag
specified without a value")

2. Increment inbound MsgSeqNum

3. Generate an "error" condition in
test output.

e. Receive message with incorrect value (out
of range or not part of valid list of
enumerated values) for a particular field
identifier (tag number).

Exception: undefined enumeration values
used are specified in testing profile as user-
defined.

1. Send Reject (session-level)
message referencing value is
incorrect (out of range or not part
of valid list of enumerated values)
for this tag (>= FIX 4.2:
SessionRejectReason = "Value is
incorrect (out of range) for this
tag")

2. Increment inbound MsgSeqNum

3. Generate an "error" condition in
test output.

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 60 of 68

f. Receive message with a value in an
incorrect data format (syntax) for a particular
field identifier (tag number).

1. Send Reject (session-level)
message referencing value is in
an incorrect data format for this
tag (>= FIX 4.2:
SessionRejectReason = "Incorrect
data format for value")

2. Increment inbound MsgSeqNum

3. Generate an "error" condition in
test output.

g. Receive a message in which the following
is not true: Standard Header fields appear
before Body fields which appear before
Standard Trailer fields.

1. Send Reject (session-level)
message referencing incorrect
message structure
header+body+trailer (>= FIX 4.3:
SessionRejectReason = “Tag
specified out of required order”)

2. Increment inbound MsgSeqNum

3. Generate an "error" condition in
test output.

h. Receive a message in which a field
identifier (tag number) which is not part of a
repeating group is specified more than once

1. Send Reject (session-level)
message referencing duplicate
field identifier (tag number) (>=
FIX 4.3: SessionRejectReason =
“Tag appears more than once”)

2. Increment inbound MsgSeqNum

3. Generate an "error" condition in
test output.

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 61 of 68

i. Receive a message with repeating groups
in which the "count" field value for a
repeating group is incorrect.

1. Send Reject (session-level)
message referencing the incorrect
"count" field identifier (tag
number) (>= FIX 4.3:
SessionRejectReason = “Incorrect
NumInGroup count for repeating
group”)

2. Increment inbound MsgSeqNum

3. Generate an "error" condition in
test output.

j. Receive a message with repeating groups
in which the order of repeating group fields
does not match the specification.

1. Send Reject (session-level)
message referencing the repeating
group with incorrect field
ordering (>= FIX 4.3:
SessionRejectReason =
“Repeating group fields out of
order”)

2. Increment inbound MsgSeqNum

3. Generate an "error" condition in
test output.

k. Receive a message with a field of a data
type other than "data" which contains one or
more embedded <SOH> values.

1. Send Reject (session-level)
message referencing field
identifier (tag number) with
embedded <SOH> (>= FIX 4.3:
SessionRejectReason = “Non
“data” value includes field
delimiter (SOH character)”)

2. Increment inbound MsgSeqNum

3. Generate an "error" condition in
test output.

?? Discard as valid response/outcome
too

or

Consider garbled and ignore message

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 62 of 68

l. Receive a message when application-level
processing or system is not available
(Optional)

1) If < FIX 4.2

a) Send Reject (session-level)
message referencing
application message
processing is not available

2) If >= FIX 4.2

a) Send Business Message
Reject message referencing
application message
processing is not available
(>= FIX 4.2:
BusinessRejectReason =
"Application not available")

3) Increment inbound MsgSeqNum

4) Generate a "warning" condition in
test output.

m. Receive a message in which a
conditionally required field is missing.

1) If < FIX 4.2

a) Send Reject (session-level)
message referencing field
identifier (tag number) of the
missing conditionally
required field(s)

2) If >= FIX 4.2

a) Send Business Message
Reject message referencing
field identifier (tag number)
of the missing conditionally
required field(s) (>= FIX 4.2:
BusinessRejectReason =
"Conditionally Required
Field Missing")

3) Increment inbound MsgSeqNum

4) Generate an "error" condition in
test output.

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 63 of 68

N. Receive a message in which a field
identifier (tag number) appears in both
cleartext and encrypted section but has
different values.

1. Send Reject (session-level)
message referencing field
identifier (tag number) missing
from unencrypted section (>=
FIX 4.2: SessionRejectReason = "
Decryption problem")

2. Increment inbound MsgSeqNum

Generate an "error" condition in test
output.

15 Send application or
administrative messages to
test normal and abnormal
behavior/response

 Send more than one message of the same
type with header and body fields ordered
differently to verify acceptance. (Exclude
those which have restrictions regarding
order)

Messages accepted and subsequent
messages’ MsgSeqNum are accepted.

16 Queue outgoing messages Mandatory a. Message to send/queue while disconnected Queue outgoing messages. Note there
are two valid approaches:

1) Queue without regards to
MsgSeqNum

a) Store data for messages

2) Queue each message with the
next MsgSeqNum value

a) Store data for messages in
such a manner as to use and
“consume” the next
MsgSeqNum

Note: SendingTime (Tag#52): must
contain the time the message is sent
not the time the message was queued.

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 64 of 68

b. Re-connect with queued messages 1. Complete logon process (connect,
and Logon message exchange)

2. Complete MsgSeqNum recovery
process if applicable.

3. Recommended short delay or
TestRequest/Heartbeat to verify
MsgSeqNum recovery completed.

4. Note there are two valid queuing
approaches:

a) Queue without regards to
MsgSeqNum

i) Send queued messages
with new MsgSeqNum
values (greater than
Logon message’s
MsgSeqNum)

b) Queue each message with the
next MsgSeqNum value

i) (note Logon message’s
MsgSeqNum will be
greater than the queued
messages' MsgSeqNum)

ii) Counterparty will issue
ResendRequest
requesting the range of
missed messages

iii) Resend each queued
message with
PossDupFlag set to Y

Note: SendingTime (Tag#52): must
contain the time the message is sent
not the time the message was queued.

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 65 of 68

a. Receive Logon message with valid,
supported EncryptMethod

1. Accept the message

2. Perform the appropriate
decryption and encryption
method readiness

3. Respond with Logon message
with the same EncryptMethod

b. Receive Logon message with invalid or
unsupported EncryptMethod

1. Send Reject (session-level)
message referencing invalid or
unsupported EncryptMethod
value (>= FIX 4.2:
SessionRejectReason =
"Decryption problem")

2. Increment inbound MsgSeqNum

3. Send Logout message
referencing invalid or
unsupported EncryptMethod
value

4. (optional) Wait for Logout
message response (note could
have decrypt problems) or wait 2
seconds whichever comes first

5. Disconnect

6. Generate an "error" condition in
test output.

c. Receive message with valid
SignatureLength and Signature values.

Accept the message

17 Support encryption Optional

d. Receive message with invalid
SignatureLength value.

1. Send Reject (session-level)
message referencing invalid
SignatureLength value (>= FIX
4.2: SessionRejectReason =
"Signature problem")

2. Increment inbound MsgSeqNum

3. Generate an "error" condition in
test output.

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 66 of 68

e. Receive message with invalid Signature
value.

1. Send Reject (session-level)
message referencing invalid
Signature value (>= FIX 4.2:
SessionRejectReason =
"Signature problem")

2. Increment inbound MsgSeqNum

3. Generate an "error" condition in
test output.

Or consider decryption error or
message out of order, ignore message
(do not increment inbound
MsgSeqNum) and continue accepting
messages

f. Receive message with a valid
SecureDataLen value and a SecureData
value that can be decrypted into valid, parse-
able cleartext.

Accept the message

g. Receive message with invalid
SecureDataLen value.

1. Consider decryption error or
message out of order, ignore
message (do not increment
inbound MsgSeqNum) and
continue accepting messages

2. Generate a "warning" condition in
test output.

h. Receive message with a SecureData value
that cannot be decrypted into valid, parse-
able cleartext.

1. Send Reject (session-level)
message referencing invalid
SecureData value (>= FIX 4.2:
SessionRejectReason = "
Decryption problem")

2. Increment inbound MsgSeqNum

3. Generate an "error" condition in
test output.

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 67 of 68

i. Receive message with one or more fields
not present in the unencrypted portion of the
message that "must be unencrypted"
according to the spec.

3. Send Reject (session-level)
message referencing field
identifier (tag number) missing
from unencrypted section (>=
FIX 4.2: SessionRejectReason = "
Decryption problem")

4. Increment inbound MsgSeqNum

5. Generate an "error" condition in
test output.

j. Receive message with incorrect handling
of "left over" characters (e.g. when length of
clear text prior to encryption is not a multiple
of 8) according to the specified
EncryptMethod.

1. Send Reject (session-level)
message referencing incorrect
handling of "left over" characters
during encryption (>= FIX 4.2:
SessionRejectReason = "
Decryption problem")

2. Increment inbound MsgSeqNum

3. Generate an "error" condition in
test output.

a. Receive messages with
OnBehalfOfCompID and

DeliverToCompID values expected as
specified in testing profile and with correct
usage.

Accept messages 18 Support third party
addressing

Optional

b. Receive messages with
OnBehalfOfCompID or

DeliverToCompID values not specified in
testing profile or incorrect usage.

1. Send Reject (session-level)
message referencing invalid
OnBehalfOfCompID or
DeliverToCompID (>= FIX 4.2:
SessionRejectReason = "CompID
problem")

2. Increment inbound MsgSeqNum

3. Generate an "error" condition in
test output.

 Version 1.1 Errata − FIX SESSION PROTOCOL March 2008

© Copyright, 2006-2008, FIX Protocol, Limited Page 68 of 68

a. Receive message with PossResend = “Y”
and application-level check of Message
specific ID indicates that it has already been
seen on this session

1. Ignore the message.

2. Generate a "warning" condition in
test output

19 Test PossResend handling Mandatory

b. Receive message with PossResend = “Y”
and application-level check of Message
specific ID indicates that it has NOT yet
been seen on this session

1. Accept and process the message
normally.

20 Simultaneous Resend request
test

Mandatory Receive a Resend Request message while
having sent and awaiting complete set of
responses to a Resend Request message.

1. Perform resend of requested
messages.

2. Send Resend Request to request
missed messages

	INTRODUCTION
	TRANSMITTING FIXML OR OTHER XML-BASED CONTENT
	FIX MESSAGE DELIVERY
	Sequence Numbers:
	Heartbeats:
	Ordered Message Processing:
	Possible Duplicates:
	Possible Resends:
	Data Integrity:
	Message Acknowledgment:
	Encryption:

	SESSION PROTOCOL
	Application Version Independence
	Default Application Version Identification
	Extension Pack Support
	Extension Pack Backround
	Use of Extension Packs

	Custom Application Version Support

	Logon
	Message exchange
	Logout
	Message Recovery
	Logon Message NextExpectedMsgSeqNum Processing
	Standard Message header
	Application Version Independence Considerations
	Message Routing Details
	Message Routing Details – One Firm-to-One Firm (point-to-point)
	Message Routing Details – Third Party Message Routing

	Standard Message trailer
	Components
	HopGrp component block
	FIXML Definition for this Component Block– see http://www.fixprotocol.org for details

	ADMINISTRATIVE MESSAGES
	Heartbeat
	Logon
	MsgTypeGrp component block
	FIXML Definition for this Component Block– see http://www.fixprotocol.org for details

	Test Request
	Resend Request
	Reject (session-level)
	Sequence Reset (Gap Fill)
	Gap Fill mode
	Reset mode

	Logout

	FIXT Header Mapping Table
	FIXT Trailer Mapping Table
	FIX Session-level Test Cases and Expected Behaviors
	Applicability
	When to send a Logout vs. when to just disconnect
	When to send a Session Reject vs. when to ignore the message
	What constitutes a garbled message
	FIX Session-level State Matrix
	FIX Logon Process State Transition Diagram
	FIX Logout Process State Transition Diagram
	Test cases
	Buyside-oriented (session initiator) Logon and session initiation test case
	Sellside-oriented (session acceptor) Logon and session initiation test case
	Test cases applicable to all FIX systems

