
FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited

FIX Performance Session Layer
Technical Specification

Working Draft for potential Version 1.1 Release Candidate 1

THIS DOCUMENT IS A RELEASE CANDIDATE FOR A PROPOSED FIX TECHNICAL STANDARD. A RELEASE
CANDIDATE HAS BEEN APPROVED BY THE GLOBAL TECHNICAL COMMITTEE AS AN INITIAL STEP IN
CREATING A NEW FIX TECHNICAL STANDARD. POTENTIAL ADOPTERS ARE STRONGLY ENCOURAGED TO
BEGIN WORKING WITH THE RELEASE CANDIDATE AND TO PROVIDE FEEDBACK TO THE GLOBAL
TECHNICAL COMMITTEE AND THE WORKING GROUP THAT SUBMITTED THE PROPOSAL. THE
FEEDBACK TO THE RELEASE CANDIDATE WILL DETERMINE IF ANOTHER REVISION AND RELEASE
CANDIDATE IS NECESSARY OR IF THE RELEASE CANDIDATE CAN BE PROMOTED TO BECOME A FIX
TECHNICAL STANDARD DRAFT.

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 2 of 85
R0.1

DISCLAIMER

THE INFORMATION CONTAINED HEREIN AND THE FINANCIAL INFORMATION EXCHANGE PROTOCOL
(COLLECTIVELY, THE "FIX PROTOCOL") ARE PROVIDED "AS IS" AND NO PERSON OR ENTITY ASSOCIATED
WITH THE FIX PROTOCOL MAKES ANY REPRESENTATION OR WARRANTY, EXPRESS OR IMPLIED, AS TO
THE FIX PROTOCOL (OR THE RESULTS TO BE OBTAINED BY THE USE THEREOF) OR ANY OTHER MATTER
AND EACH SUCH PERSON AND ENTITY SPECIFICALLY DISCLAIMS ANY WARRANTY OF ORIGINALITY,
ACCURACY, COMPLETENESS, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. SUCH
PERSONS AND ENTITIES DO NOT WARRANT THAT THE FIX PROTOCOL WILL CONFORM TO ANY
DESCRIPTION THEREOF OR BE FREE OF ERRORS. THE ENTIRE RISK OF ANY USE OF THE FIX PROTOCOL IS
ASSUMED BY THE USER.

NO PERSON OR ENTITY ASSOCIATED WITH THE FIX PROTOCOL SHALL HAVE ANY LIABILITY FOR
DAMAGES OF ANY KIND ARISING IN ANY MANNER OUT OF OR IN CONNECTION WITH ANY USER'S USE
OF (OR ANY INABILITY TO USE) THE FIX PROTOCOL, WHETHER DIRECT, INDIRECT, INCIDENTAL, SPECIAL
OR CONSEQUENTIAL (INCLUDING, WITHOUT LIMITATION, LOSS OF DATA, LOSS OF USE, CLAIMS OF
THIRD PARTIES OR LOST PROFITS OR REVENUES OR OTHER ECONOMIC LOSS), WHETHER IN TORT
(INCLUDING NEGLIGENCE AND STRICT LIABILITY), CONTRACT OR OTHERWISE, WHETHER OR NOT ANY
SUCH PERSON OR ENTITY HAS BEEN ADVISED OF, OR OTHERWISE MIGHT HAVE ANTICIPATED THE
POSSIBILITY OF, SUCH DAMAGES.

DRAFT OR NOT RATIFIED PROPOSALS (REFER TO PROPOSAL STATUS AND/OR SUBMISSION STATUS ON
COVER PAGE) ARE PROVIDED "AS IS" TO INTERESTED PARTIES FOR DISCUSSION ONLY. PARTIES THAT
CHOOSE TO IMPLEMENT THIS DRAFT PROPOSAL DO SO AT THEIR OWN RISK. IT IS A DRAFT DOCUMENT
AND MAY BE UPDATED, REPLACED, OR MADE OBSOLETE BY OTHER DOCUMENTS AT ANY TIME. THE FIX
GLOBAL TECHNICAL COMMITTEE WILL NOT ALLOW EARLY IMPLEMENTATION TO CONSTRAIN ITS ABILITY
TO MAKE CHANGES TO THIS SPECIFICATION PRIOR TO FINAL RELEASE. IT IS INAPPROPRIATE TO USE FIX
WORKING DRAFTS AS REFERENCE MATERIAL OR TO CITE THEM AS OTHER THAN “WORKS IN PROGRESS”.
THE FIX GLOBAL TECHNICAL COMMITTEE WILL ISSUE, UPON COMPLETION OF REVIEW AND
RATIFICATION, AN OFFICIAL STATUS ("APPROVED") OF/FOR THE PROPOSAL AND A RELEASE NUMBER.

No proprietary or ownership interest of any kind is granted with respect to the FIX Protocol (or any
rights therein).

Copyright 2013-2018 FIX Protocol Ltd., all rights reserved.

FIX Performance Session Layer specification by FIX Protocol Ltd. is licensed under a Creative

Commons Attribution-NoDerivatives 4.0 International License.

Based on a work at https://github.com/FIXTradingCommunity/fixp-specification.

http://www.fixtradingcommunity.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://github.com/FIXTradingCommunity/fixp-specification
http://creativecommons.org/licenses/by-nd/4.0/

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 3 of 85
R0.1

Contents

1 Introduction .. 7

1.1 FIXP features ... 7

1.2 Authors .. 7

1.2.1 Related FIX Standards ... 7

1.2.2 Dependencies on Other Specifications ... 8

1.3 Specification terms ... 9

1.4 Definitions ... 9

2 Requirements .. 10

2.1 Business Requirements ... 10

2.2 Technical Requirements .. 10

2.2.1 Protocol Layering .. 10

2.2.2 Security Mechanisms .. 10

2.2.3 Low Overhead ... 11

3 Common Features ... 12

3.1 Usage and Naming Conventions ... 12

3.2 Data Types ... 12

3.3 FIXP Session Messages .. 13

3.3.1 Message Type Identification ... 13

3.3.2 Fields ... 13

3.3.3 Message Framing .. 13

3.4 Session Properties ... 14

3.4.1 Session Identification .. 14

3.4.2 User Identification... 14

3.4.3 Session Lifetime .. 14

3.4.4 Flow Types... 14

3.5 Message Sequencing ... 15

3.5.1 Sequence Numbering .. 15

3.5.2 Datagram oriented protocol considerations .. 15

3.5.3 Multiplexed session considerations .. 16

3.5.4 Context switches ... 16

3.5.5 Application Layer Sequencing ... 16

3.6 In-band Template Delivery .. 16

4 Point-to-Point Session Protocol .. 18

4.1 Summary of Messages that Control Lifetime ... 18

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 4 of 85
R0.1

4.2 Session Initiation and Negotiation .. 18

4.2.1 Initiate Session Negotiation .. 18

4.2.2 Accept Session Negotiation .. 19

4.2.3 Reject Session Negotiation ... 19

4.2.4 Session Negotiation Sequence Diagram ... 20

4.3 Session Establishment ... 21

4.3.1 Establish .. 21

4.3.2 Establish Acknowledgment ... 21

4.3.3 Establish Reject ... 22

4.3.4 Session Establishment Sequence Diagram ... 23

4.4 Transport Termination .. 23

4.4.1 Terminate Response ... 24

4.4.2 Closing the Transport .. 24

4.4.3 WebSocket Termination ... 24

4.4.4 Terminate Session Sequence Diagrams .. 25

4.5 Session Heartbeat ... 26

4.6 Resynchronization ... 27

4.6.1 Retransmission Request .. 27

4.6.2 Retransmission Responses .. 27

4.6.3 RetransmitReject Diagram .. 30

4.6.4 Retransmission Violations ... 30

4.6.5 Retransmit Violation Diagram ... 31

4.6.6 FIX Application Layer Recovery ... 31

4.7 Finalizing a Session .. 31

4.7.1 Finish Sending ... 32

4.7.2 Finish Receiving ... 32

4.7.3 Terminating a Recoverable Session Sequence Diagram ... 33

4.8 Idempotent Flow ... 33

4.8.1 Applied .. 34

4.8.2 NotApplied .. 34

4.8.3 Idempotent Flow Sequence Diagram.. 35

4.9 WebSocket Usage ... 35

4.9.1 Message Framing .. 35

4.9.2 Session Initiation ... 36

4.9.3 Heartbeats... 36

4.9.4 Termination ... 36

5 Multicast Session Protocol .. 37

5.1 Multicast Session Lifecycle .. 37

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 5 of 85
R0.1

5.1.1 Multicast Session Establishment ... 37

5.1.2 Finalizing a Multicast Session .. 38

5.2 Idempotent Flow over Multicast .. 38

5.3 Session Heartbeat ... 38

6 Summary of Session Messages ... 39

6.1 FIXP Session Messages .. 39

6.2 Related Application Messages .. 39

6.3 Summary of Protocol Violations ... 40

7 Appendix A - Usage Examples (TCP) ... 41

7.1 Initialization ... 41

7.1.1 Session negotiation (both Recoverable) ... 41

7.1.2 Session negotiation (both Unsequenced) ... 41

7.1.3 Session negotiation (Client Idempotent and Server Recoverable – highly recommended)
 41

7.1.4 Session negotiation (Client None and Server Recoverable) ... 41

7.1.5 Session negotiation (Client Unsequenced and Server Recoverable) 42

7.1.6 Session negotiation (Client None and Server Unsequenced) ... 42

7.1.7 Session negotiation (rejects) ... 42

7.1.8 Establishment (Recoverable) .. 45

7.1.9 Establishment (Unsequenced) .. 45

7.1.10 Establishment (idempotent) ... 45

7.1.11 Establishment (none) .. 46

7.1.12 Establishment rejects .. 46

7.2 Unbinding .. 51

7.2.1 Ungraceful termination (time out) ... 51

7.2.2 Ungraceful termination (sequence message received with lower sequence number) 52

7.2.3 Ungraceful termination (establishment ack received with lower sequence number) 53

7.2.4 Graceful Termination .. 54

7.2.5 Disconnection.. 55

7.3 Transferring ... 56

7.3.1 Sequence ... 56

7.3.2 Context (Multiplexing Session ID’s) .. 60

7.3.3 Unsequenced Heartbeat ... 61

7.3.4 Retransmission Request .. 62

7.3.5 Retransmission Reject ... 66

7.4 Finalizing ... 71

7.4.1 Finished Sending & Finished Receiving ... 71

7.4.2 Finished Sending & No Response Received .. 73

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 6 of 85
R0.1

7.4.3 Finished Sending & Recoverable Flow .. 74

7.4.4 Finished Sending & Termination ... 76

7.4.5 Finished Sending & Further Message Flow ... 77

7.4.6 Finished Sending & Half-Close .. 79

8 Appendix B – FIXP Rules of Engagement .. 84

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 7 of 85
R0.1

1 Introduction

FIX Performance Session Layer (FIXP) is a “lightweight point-to-point protocol” introduced to provide an
open industry standard for high performance computing requirements currently encountered by the FIX
Community. FIXP is a derived work. The origin and basis for FIXP are the FIX session layer protocols and
the designed and implemented by NASDAQOMX, SoupTCP, SoupBinTCP, and UFO (UDP for Orders).
Every attempt was made to keep FIXP as close to the functionality and behavior of SoupBinTCP and UFO
as possible. Extensions and refactoring were performed as incremental improvements. Every attempt
was made to limit the FIXP to establishing and maintaining a communication session between two end
points in a reliable manner, regardless of the reliability of the underlying transport.

1.1 FIXP features

• Very lightweight session layer with no restrictions on the application layer

• Encoding independent supporting binary protocols

• Transport independent supporting both stream, datagram, and message oriented protocols

• Point-to-point as well as multicast patterns, sharing common primitives

• Negotiable delivery guarantees that may be asymmetrical

1.2 Authors

Name Affiliation Contact Role

Anders
Furuhed

Goldman Sachs anders.furuhed@gs.com Protocol Designer

David
Rosenborg

Goldman Sachs david.rosenborg@gs.com Protocol Designer

Rolf Andersson Goldman Sachs rolf.andersson@gs.com Contributor

Jim Northey LaSalle Technology jim.northey@fintechstandards.us Global Technical
Committee co-chair

Júlio L R
Monteiro

formerly B3 juliolrmonteiro@gmail.com Editor, Working Group
convener

Aditya Kapur CME Group, Inc Aditya.kapur@cmegroup.com Contributor

Don
Mendelson

Silver Flash LLC donmendelson@silver-flash.net Working Group Lead

Li Zhu Shanghai Stock
Exchange

lzhu@sse.com.cn Contributor

1.2.1 Related FIX Standards

The FIX Simple Open Framing Header standard governs how messages are delimited and has a specific
relationship mentioned in this specification. FIXP interoperates with the other FIX standards at

mailto:anders.furuhed@gs.com
mailto:david.rosenborg@gs.com
mailto:rolf.andersson@gs.com
mailto:jim.northey@fintechstandards.us
mailto:juliolrmonteiro@gmail.com
mailto:Aditya.kapur@cmegroup.com
mailto:donmendelson@silver-flash.net
mailto:lzhu@sse.com.cn

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 8 of 85
R0.1

application and presentation layers, but it is not dependent on them. Therefore, they are considered
non-normative for FIXP.

Related Standard Version Reference
location

Relationship Normative

Simple Open Framing
Header

Draft
Standard

SOFH Optional usage at
presentation layer

Yes

FIX message
specifications

5.0 SP2 FIX 5.0 SP2 Presentation and
application layers

No

FIX Simple Binary
Encoding

Version 1.0 Simple Binary
Encoding

Optional usage at
presentation layer

No

Encoding FIX Using
ASN.1

Draft
Standard

ASN.1 Optional usage at
presentation layer

No

Encoding FIX Using
GPB

RC2 GPB Optional usage at
presentation layer

No

FIX-over-TLS (FIXS) Draft
Standard

FIXS Security guidelines Yes

1.2.2 Dependencies on Other Specifications

FIXP is dependent on several industry standards. Implementations of FIXP must conform to these
standards to interoperate. Therefore, they are normative for FIXP. Other protocols may be used by
agreement between counterparties.

Related Standard Version Reference location Relationship Normative

RFC 793
Transmission Control
Program (TCP)

N/A http://tools.ietf.org/html/rfc793
and related standards

Uses transport Yes

RFC 6455 WebSocket
Protocol

N/A http://tools.ietf.org/html/rfc6455 Uses transport Yes

RFC 768 User
Datagram Protocol
(UDP)

N/A http://tools.ietf.org/html/rfc768 Uses transport Yes

RFC4122 A
Universally Unique
Identifier (UUID) URN
Namespace

N/A http://tools.ietf.org/html/rfc4122 Uses Yes

UTF-8, a
transformation
format of ISO 10646

N/A http://tools.ietf.org/html/rfc3629 Uses encoding Yes

Various
authentication
protocols

N/A Optional usage
at session
layer

No

https://www.fixtrading.org/packages/fix-simple-open-framing-header-draft-standard-1-0/
https://www.fixtrading.org/packages/fix-5-0-service-pack-2-specification-w-20110818-errata/
https://www.fixtrading.org/packages/simple-binary-encoding-technical-specification-final/
https://www.fixtrading.org/packages/simple-binary-encoding-technical-specification-final/
https://www.fixtrading.org/packages/encoding-fix-using-asn-1-draft-standard/
https://www.fixtrading.org/packages/encoding-fix-using-google-protocol-buffers-release-candidate-2/
https://www.fixtrading.org/packages/fixs-technical-specification-draft-standard/
http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc768
http://tools.ietf.org/html/rfc4122
http://tools.ietf.org/html/rfc3629

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 9 of 85
R0.1

1.3 Specification terms

These key words in this document are to be interpreted as described in Internet Engineering Task Force
RFC2119. These terms indicate an absolute requirement for implementations of the standard: "must",
or "required".

This term indicates an absolute prohibition: "must not".

These terms indicate that a feature is allowed by the standard but not required: "may", "optional". An
implementation that does not provide an optional feature must be prepared to interoperate with one
that does.

These terms give guidance, recommendation or best practices: "should" or "recommended". A
recommended choice among alternatives is described as "preferred".

These terms give guidance that a practice is not recommended: "should not" or "not recommended".

1.4 Definitions

Term Definition

Client Initiator of session

Credentials User identification for authentication

Flow A unidirectional stream of messages. Each flow has one producer and one or more
consumers.

Idempotence Idempotence means that an operation that is applied multiple times does not change
the outcome, the result, after the first time

Multicast A method of sending datagrams from one producer to multiple consumers

IETF Internet Engineering Task Force

Server Acceptor of session

Session A dialog for exchanging application messages between peers. An established point-to-
point session consists of a pair of flows, one in each direction between peers. A
multicast session consists of a single flow from the producer to multiple consumers.

TCP Transmission Control Protocol is a set of IETF standards for a reliable stream of data
exchanged between peers. Since it is connection oriented, it incorporates some
features of a session protocol.

TLS Transport Layer Security is a set of IETF standards to provide security to a session. TLS
is a successor to Secure Sockets Layer (SSL).

UDP User Datagram Protocol is a connectionless transmission for delivering packets of
data. Any rules for a long-lived exchange of messages must be supplied by a session
protocol.

WebSocket An IETF protocol that consists of an opening handshake followed by basic message
framing, layered over TCP. May be used with TLS.

http://www.apps.ietf.org/rfc/rfc2119.html
http://www.apps.ietf.org/rfc/rfc2119.html

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 10 of 85
R0.1

2 Requirements

2.1 Business Requirements

Create an enhanced session protocol that can provide reliable, highly efficient, exchange of messages to
support high performance financial messaging, over a variety of transports.

Protocol shall be fit for purpose for current high message rates, low latency environments in financial
markets, but should be to every extent possible applicable to other business domains. There is no
reason to limit or couple the session layer to the financial markets / trading business domain without
extraordinary reason.

Support common message flow types: Recoverable, Unsequenced, Idempotent (operations guaranteed
to be applied only once), and None (for a one-way flow of messages).

Protocol shall support asymmetric models, such as market participant to market, in addition to peer-to-
peer (symmetric). Allow the communication of messages to multiple receivers (broadcast).

The session protocol does not require or recommend a specific authentication protocol. Counterparties
are free to agree on user authentication techniques that fit their needs.

2.2 Technical Requirements

2.2.1 Protocol Layering

This standard endeavors to maintain a clear separation of protocol layers, as expressed by the Open
Systems Interconnection model (OSI). The responsibilities of a session layer are establishment,
termination and restart procedures and rules for the exchange of application messages.

The protocol shall be independent of message encoding (presentation layer), to provide the maximum
utility. Encoding independence applies both to session layer messages specified in this document as well
as to application messages. It is simpler if session protocol messages are encoded the same way as
application messages, but that is not a requirement of this session protocol.

Users are free to specify message encodings by agreement with counterparties. FIX provides Simple
Binary Encoding as well as mappings of FIX to other high performance encodings such as ASN.1, and
Google Protocol Buffers. See the list of related standards above. Other recognized encodings may follow
in the future.

Of necessity, the session protocol makes some adaptations for transport layer protocols used by the
session layer since the capabilities of common transports are quite different. In particular, TCP is
connection- and stream-oriented and implements its own reliable delivery mechanisms. Meanwhile,
UDP is datagram-oriented and does not guarantee delivery in order. Unfortunately, these characteristics
bleed across protocol layers.

2.2.2 Security Mechanisms

FIXP does not specify its own security features. Rather, the FIX Trading Community separately issues
security requirements and recommendations that may apply to FIXP and other FIX session protocols.
Due to the ever-changing nature of information security, the requirements and recommendations are

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 11 of 85
R0.1

likely to be updated periodically. In general, it is recommended that FIX traffic be protected by using
proven controls specified by the FIX Trading Community. See the FIX-over-TLS (FIXS) standard (reference
listed in section 1).

The FIX Trading Community is in the process of specifying how to authenticate parties using TLS and
optionally using FIX credentials. FIX credentials can be used to authenticate a client after an underlying
TLS session has been established. FIXP supports this use case by providing a field for credentials in the
FIXP session negotiation handshake.

2.2.3 Low Overhead

Minimum overhead is added to the messages exchanged between peers, using only the strictly
necessary control messages.

By agreement between counterparties, a message framing protocol may be used to delimit messages.
This relieves the session layer of application message decoding to determine message boundaries. FIX
offers the Simple Open Framing Header standard for framing messages encoded with binary wire
formats. See standards references above.

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 12 of 85
R0.1

3 Common Features

3.1 Usage and Naming Conventions

All symbolic names for messages and fields in this protocol must follow the same naming convention as
other FIX specifications: alphanumeric characters plus underscores without spaces.

3.2 Data Types

Data types used in this standard are abstract. The terminology used to define them are to be interpreted
as described in international standard ISO/IEC 11404 Information technology -- General-Purpose
Datatypes .

It defines a set of datatypes, independent of any particular programming language specification or
implementation, that is rich enough so that any common datatype in a standard programming language or service
package can be mapped to some datatype in the set.

Actual wire format of FIXP is left to the presentation layer implementation.

FIXP Type Description General
Purpose
Type

Properties

u8 Unsigned number Integer Ordered, exact, numeric, bounded.
Range 0..28-1

u16 Unsigned number Integer Ordered, exact, numeric, bounded.
Range 0..216-1

u32 Unsigned number Integer Ordered, exact, numeric, bounded.
Range 0..232-1

u64 Unsigned number Integer Ordered, exact, numeric, bounded.
Range 0..264-1

UUID RFC 4122 version 4
compliant unique identifier

Octet
string

Fixed size 16.

String Text Character
string

Unordered, exact, non-numeric,
denumerable. Parameterized by
character set.

nanotime Time in nanoseconds Date-and-
Time

Ordered, exact, numeric, bounded.
Time-unit = nanosecond. Same range as
u64.

DeltaMillisecs Number of milliseconds Time
interval

Ordered, exact, numeric, bounded.
Time-unit = millisecond. Same range as
u32.

Object Unspecified data content Octet
string

Unordered, exact, non-numeric,
denumerable.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39479
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39479

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 13 of 85
R0.1

FIXP Type Description General
Purpose
Type

Properties

Enumeration A finite set of values. Error
and message type
identifiers are enumerated
by symbolic name in this
specification.

State Unordered, exact, non-numeric. The
value space of a state datatype is the set
comprising exactly the named values in
the state-value-list, each of which is
designated by a unique state-literal.

3.3 FIXP Session Messages

The FIXP protocol defines several messages that are used to establish and tear down sessions and
control sequencing of messages for delivery. Message layouts are specified in this document by symbolic
names and the abstract data types listed above. Wire format details are provided by supplements to this
specification for each of the supported FIX encodings.

Those supplements also explain how to distinguish session messages from application messages in that
specific encoding. FIXP does not require that application messages be in the same encoding as session
messages. With the use of Simple Open Framing Header to identify the encoding of the following
message, it is even possible to mix wire formats in a session. However, a common encoding for all
messages likely permits simpler implementation.

3.3.1 Message Type Identification

Message types are listed in this document as an enumeration of symbolic names. Each FIX encoding tells
how message type identifiers are encoded on the wire.

See section 4 below for an enumeration of message types.

3.3.2 Fields

Exact wire format is determined by a presentation layer protocol (message encoding). However, fields
should be encoded in the same order that they are listed in this specification.

3.3.3 Message Framing

FIXP does not require application messages to have a session layer header. Application messages may
have their own presentation layer header, depending on encoding. However, application messages may
immediately follow Sequence without any intervening session layer prologue.

Optionally, application messages may be delimited by use of the Simple Open Framing Header. This is
most useful if session message encoding is different than application message encoding or if a session
carries application messages in multiple encodings. The framing header identifies the encoding of the
message that follows and gives its overall length. If it is used, then FIXP need not parse application
messages to determine length and keep track of message counts in a flow.

Message-oriented protocols such as WebSocket obviate the need for additional framing protocol.

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 14 of 85
R0.1

3.4 Session Properties

3.4.1 Session Identification

Each session must be identified by a unique Session ID encoded as a UUID version 4 (RFC 4122) assigned
by the client. The benefit of using an UUID is that it is effortless to allocate in a distributed system. It is
also simple and efficient to hash and therefore easy to look up at the endpoints. The downside is a
larger size overhead. The identifier however does not appear in the stream except once at the start of
each datagram, when using UDP, or when sessions are multiplexed, regardless of the underlying
transport that is used. For a non-multiplexed TCP session, the identifier therefore appears only once
during the lifetime of the TCP session. A session identifier must be unique, not only amongst currently
active sessions, but for all time. Reusing a session ID is a protocol violation.

3.4.2 User Identification

The FIX Trading Community is in the process of specifying how to authenticate counterparties. This is
expected to primarily using TLS and, optionally, using TLS in conjunction with FIX credentials. FIX
credentials can be used after a TLS transport has been established, whilst its FIXP session is being
established. In any event, the security features will be specified outside of FIXP, but may make use of
FIXP credentials.

FIXP does not dictate the format of user credentials. They are agreed between counterparties and
should be documented in rules of engagement. The Credentials field in FIXP is of datatype Object
(opaque data) so no restriction on its contents is imposed by the protocol.

3.4.3 Session Lifetime

A logical session is established between counterparties and lasts until information flows between them
are complete. Commonly, such flows are concurrent with daily trading sessions, but no set time limit is
imposed by this protocol. Rather, timings for session start and end are set by agreement between
counterparties.

A logical session is identified by a session ID, as described above, until its information flows are finalized.
After finalization, the old session ID is no longer valid, and messages are no longer recoverable.
Counterparties may subsequently start a new session under a different ID.

A logical session is bound to a transport, but a session may outlive a transport connection. The binding
to a transport may be terminated intentionally or may be triggered by an error condition. However, a
client may reconnect and bind the existing session to the new transport. When re-establishing an
existing session, the original session ID continues to be used, and recoverable messages that were lost
by disconnection may be recovered.

3.4.4 Flow Types

Each stream of application messages in one direction on a FIXP session is called a flow. FIXP supports
configurable delivery guarantees for each flow. A bidirectional session may have asymmetrical flows.

From highest to lowest delivery guarantee, the flow types are:

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 15 of 85
R0.1

• Recoverable: Guarantees exactly-once message delivery. If gaps are detected, then missed
messages may be recovered by retransmission.

• Idempotent: Guarantees at-most-once delivery. If gaps are detected, the sender is notified, but
recovery is under control of the application, if it is done at all.

• Unsequenced: Makes no delivery guarantees (best-effort). This choice is appropriate if guarantees
are unnecessary or if recovery is provided at the application layer or through a different
communication channel.

• None: No application messages should be sent in one direction of a session. If ClientFlow is None,
then application messages flow only from server to client.

3.4.4.1 Flow Restrictions

All the flow types listed above are possible for a point-to-point session. Only one of the flows may be
None, meaning that although the transport supports bidirectional transmissions, application messages
flow in only one direction. By agreement between counterparties, only certain of these flow types may
be supported for a particular service.

A multicast session only supports one flow from producer to consumers, and it is restricted to the
Idempotent type, possibly with out-of-band recovery.

3.5 Message Sequencing

3.5.1 Sequence Numbering

Sequence numbering supports ordered delivery and recovery of messages. In FIXP, only application
messages are sequenced, not session protocol messages. A Sequence message (or Context message
described below) must be used to start a sequenced flow of application messages. Any applications
message passed after a Sequence message is implicitly numbered, where the first message after
Sequence has the sequence number NextSeqNo.

Sending a Sequence or Context message on an Unsequenced or None flow is a protocol violation.

Sequence

Sequence message must be used only in a Recoverable or Idempotent flow on a non-multiplexed
transport.

Field name Type Required Value Description

MessageType Enum Y Sequence

NextSeqNo u64 Y The sequence number of the next message after the
Sequence message.

3.5.2 Datagram oriented protocol considerations

Using a datagram-oriented transport like UDP, each datagram carrying a sequenced flow, the Sequence
message is key to detecting packet loss and packet reordering and must precede any application
messages in the packet.

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 16 of 85
R0.1

FIXP provides no mechanism for fragmenting messages across datagrams. In other words, each
application message must fit within a single datagram on UDP.

3.5.3 Multiplexed session considerations

If sessions are multiplexed over a transport, they should be framed independently. If a framing header is
used, the same framing protocol must be used for all sessions on a multiplexed transport. There would
be no practical way to delimit messages with mixed framing policies.

If flows are multiplexed over a transport, the transport does not imply the session. When multiplexing,
the Context message expands Sequence to also specify the session being sequenced. Context is used to
set the session for the remainder of the current datagram (in a datagram-oriented transport) or until a
new Context is passed. In a sequenced flow, Context supersedes the role of Sequence by including
NextSeqNo (optimizes away the Sequence that would otherwise follow).

Context

Context message must be used in a Recoverable or Idempotent flow on a multiplexed transport.

Field name Type Required Value Description

MessageType Enum Y Context

SessionId UUID Y Session Identifier

NextSeqNo u64 N The sequence number of the next message after the
Context message.

3.5.4 Context switches

A change in session context ends the sequence of messages implicitly and the sender must pass a
Sequence or Context message again before starting to send sequenced messages. A Sequence message
must be sent if the session is not multiplexed and Context must be sent if it is multiplexed.

Changes of session context include:

• Interleaving of new, real-time messages and retransmitted messages.

• Switching from one multiplexed session to another when sharing a transport.

3.5.5 Application Layer Sequencing

Application-layer sequencing may be used on an Unsequenced flow as an alternative to FIXP session-
layer message sequencing. If used, each application message body must contain an identifier used to
sequence messages, and the application provider must specify rules for out-of-order delivery and
recovery.

3.6 In-band Template Delivery

FIXP is independent of the wire format of session and application messages. However, some message
encodings are controlled by templates that must be shared between peers in order to interoperate.
Therefore, FIXP provides a means to deliver templates or message schemas.

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 17 of 85
R0.1

All FIX encodings that use a template or message schema are supported. They are identified by the same
code registered for Simple Open Framing Header (SOFH).

Templates may be delivered either over a point-to-point or multicast session. MessageTemplate may be
sent at any time. For a multicast, it is recommended to resend templates at intervals to support late
joiners. It is assumed to apply to all sessions on a transport in the case of multiplexing.

MessageTemplate

Field name Type Required Value Description

MessageType Enum Y MessageTemplate

EncodingType u32 Y Identifier registered for SOFH

EffectiveTime nanotime N Date-time that the template becomes
effective. If not present, effective
immediately.

Version Object N Version and format description. Version
may also be embedded in the template
itself, depending on protocol.

Template Object Y Content of the template or message
schema

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 18 of 85
R0.1

4 Point-to-Point Session Protocol

A point-to-point session between a client and server must be conducted over a bidirectional transport,
such as TCP or UDP unicast. Point-to-point protocol is designed for private flows of information between
organizations. Optionally, multiple sessions belonging to an organization may be multiplexed over a
shared transport.

4.1 Summary of Messages that Control Lifetime

A logical session must be created by using a Negotiation message. The session ID must be sent in the
Negotiation message and that ID is used for the lifetime of the session.

After negotiation is complete, the client must send an Establish message to reach the established state.
Once established, exchange of application messages may proceed. The established state is concurrent
with the lifetime of a connection-oriented transport such as TCP. A client may re-establish a previous
session after reconnecting without any further negotiation. Thus, Establish binds the session to the new
transport instance.

To signal a peer that a disconnection is about to occur, a Terminate message should be sent. This
unbinds the transport from the session, but it does not end a logical session.

A session that has a recoverable flow may be re-established by sending Establish with the same session
ID, and an exchange of messages may continue until all business transactions are finished.

A logical session should be ended by sending a FinishedSending message. Thereafter, no more
application messages should be sent. The peer must respond with FinishedReceiving when it has
processed the last message, and then the transport must be terminated for the final time for that
session. Once a flow is finalized and the transport is unbound, a session ID is no longer valid and
messages previously sent on that session are no longer recoverable.

4.2 Session Initiation and Negotiation

A negotiation dialog is provided to support a session negotiation protocol that is used for a client to
declare what id it will be using, without having to go out of band. There is no concept of resetting a
session. Instead of starting over a session, a new session is negotiated - a SessionId in UUID form is
cheap.

The negotiation dialog declares the types of message flow in each direction of a session.

4.2.1 Initiate Session Negotiation

Negotiate message is sent from client to server.

Negotiate

FlowType = Recoverable | Unsequenced | Idempotent | None

Field name Type Required Value Description

MessageType Enum Y Negotiate

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 19 of 85
R0.1

Field name Type Required Value Description

SessionId UUID Y Session Identifier

Timestamp nanotime Y Time of request

ClientFlow FlowType
Enum

Y Type of flow from client to server

Credentials Object N Optional credentials to identify the client.
Format to be determined by agreement
between counterparties.

4.2.2 Accept Session Negotiation

When a session is accepted by a server, it must send a NegotiationResponse in response to a Negotiate
message.

To support mutual authentication, a server may return a Credentials field to the NegotiationResponse
message. It conveys identification of the server back to the client. As for the Credentials field in the
Negotiate message, the format should be determined by agreement of counterparties.

NegotiationResponse

FlowType = Recoverable | Unsequenced | Idempotent | None

Field name Type Required Value Description

MessageType Enum Y NegotiationResponse

SessionId UUID Y Session Identifier

RequestTimestamp nanotime Y Matches Negotiate.Timestamp

ServerFlow FlowType
Enum

Y Type of flow from server to
client

Credentials Object N Optional credentials to identify
the server. Format to be
determined by agreement
between counterparties.

4.2.3 Reject Session Negotiation

When a session cannot be created, a server must send NegotiationReject to the client, giving the reason
for the rejection. No further messages should be sent, and the transport should be terminated.

NegotiationRejectCode = Credentials | Unspecified | FlowTypeNotSupported | DuplicateId

Rejection reasons:

• Credentials: failed authentication because identity is not recognized, or the user is not authorized
to use a particular service.

• FlowTypeNotSupported: server does not support requested client flow type.

• DuplicateId: session ID is non-unique.

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 20 of 85
R0.1

• Unspecified: Any other reason that the server cannot create a session.

If negotiation is re-attempted after rejection, a new session ID should be generated.

NegotiationReject

Field name Type Required Value Description

MessageType Enum Y NegotiationReject

SessionId UUID Y Session Identifier

RequestTimestamp nanotime Y Matches
Negotiate.Timestamp

Code NegotiationRejectCode
Enum

Y

Reason string N Reject reason details

4.2.4 Session Negotiation Sequence Diagram

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 21 of 85
R0.1

4.3 Session Establishment

Establish attempts to bind the specified logical session to the transport that the message is passed over.
The response to Establish is either EstablishmentAck or EstablishmentReject.

4.3.1 Establish

The client must send Establish message to the server and await acknowledgement.

There is no specific timeout value for the wait defined in this protocol. Experience should be a guide to
determine an abnormal wait after which a server is considered unresponsive. Then establishment may
be retried or out-of-band inquiry may be made to determine application readiness.

Establish

Field name Type Required Value Description

MessageType Enum Y Establish

SessionId UUID Y Session Identifier

Timestamp nanotime Y Time of request

KeepaliveInterval DeltaMillisecs Y The longest time in milliseconds the client
may remain silent before sending a keep
alive message

NextSeqNo u64 N For re-establishment of a recoverable
server flow only, the next application
sequence number to be produced by the
client.

Credentials object N Optional credentials to identify the client.

Counterparties may agree on a valid range for KeepaliveInterval.

The server should evaluate NextSeqNo to determine whether it missed any messages after re-
establishment of a recoverable flow. If so, it may immediately send a RetransmitRequest after sending
EstablishAck.

4.3.2 Establish Acknowledgment

Used to indicate the acceptor acknowledges the session. If the communication flow from this endpoint
is recoverable, it should fill the NextSeqNo field, allowing the initiator to start requesting the replay of
messages that it has not received.

EstablishmentAck

Field name Type Required Value Description

MessageType Enum Y EstablishmentAck

SessionId UUID Y SessionId is included only for
robustness, as matching
RequestTimestamp is enough

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 22 of 85
R0.1

Field name Type Required Value Description

RequestTimestamp nanotime Y Must match
Establish.Timestamp

KeepaliveInterval DeltaMillisecs Y The longest time in milliseconds
the server may wait before
sending a keep alive message

NextSeqNo u64 N For a recoverable server flow
only, the next application
sequence number to be
produced by the server.

The client should evaluate NextSeqNo to determine whether it missed any messages after re-
establishment of a recoverable flow. If so, it may immediately send a RetransmitRequest .

4.3.3 Establish Reject

EstablishmentRejectCode = Unnegotiated | AlreadyEstablished | SessionBlocked | KeepaliveInterval |
Credentials | Unspecified

Rejection reasons:

• Unnegotiated: Establish request was not preceded by a Negotiation or session was finalized,
requiring renegotiation.

• AlreadyEstablished: EstablishmentAck was already sent; Establish was redundant.

• SessionBlocked: user is not authorized

• KeepaliveInterval: value is out of accepted range.

• Credentials: failed because identity is not recognized, or the user is not authorized to use a
particular service.

• Unspecified: Any other reason that the server cannot establish a session.

EstablishmentReject

Field name Type Require
d

Value Description

MessageType Enum Y EstablishmentRejec
t

SessionId UUID Y SessionId is
redundant and
included only for
robustness

RequestTimestam
p

nanotime Y Must match
Establish.Timestam
p

Code EstablishmentRejectCod
e Enum

Y

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 23 of 85
R0.1

Field name Type Require
d

Value Description

Reason string N Reject reason
details

4.3.4 Session Establishment Sequence Diagram

4.4 Transport Termination

Terminate is a signal to the peer that a party intends to drop the binding between the logical session and
the underlying transport. Either peer may terminate its transport if there are no more messages to send
but it expects to re-establish the logical session at a later time.

An established session becomes terminated (stops being established) for any of the following reasons:

• One of the peers receives a Terminate message (or Close frame on WebSocket)..

• The transport was abruptly disconnected.

• The keep-alive interval expired and no keep-alive message received. It is recommended to allow
some leniency in timeout to allow for slight mismatches of timers between parties.

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 24 of 85
R0.1

• The peer violated this protocol. A specific example of protocol violation is to send a
RetransmitRequest while another one is in progress.

• Additionally, a transport should be terminated if an unrecoverable error occurs in message parsing
or framing.

No other messages may be sent on the session after sending a Terminate message. Any messages sent
after Terminate are a protocol violation and should be ignored.

TerminationCode = Finished | UnspecifiedError | ReRequestOutOfBounds | ReRequestInProgress

Terminate

Field name Type Required Value Description

MessageType Enum Y Terminate

SessionId UUID Y SessionId is redundant and included
only for robustness

Code TerminationCode
Enum

Y

Reason string N Reject reason details

4.4.1 Terminate Response

On a point-to-point session, the party that initiated termination should then wait for a response from its
peer to permit in-flight messages to be processed. Upon receiving a Terminate message, the receiver
must respond with a Terminate message. The Terminate response must be the last message sent.

If the peer is unresponsive to Terminate for a heartbeat interval, then the initiator of termination should
consider the session terminated anyway.

4.4.2 Closing the Transport

On a non-multiplexed transport, when the party that initiated termination receives the Terminate
response from its peer, it then should close the transport immediately.

On a multiplexed transport, the transport should be closed when the last session on that transport is
terminated. When termination is the result of an unexpected transport disconnection, then all sessions
on that transport are terminated.

On a connectionless transport such as UDP, the Terminate message informs the peer that message
exchange is suspended since there is no disconnection signal in the transport layer.

On a connection-oriented transport such as TCP, when the last peer that initiated termination receives a
Terminate response, it should disconnect the socket from its end. Both peers then complete the
transport close handshake.

4.4.3 WebSocket Termination

On a WebSocket transport, a Close frame is used instead of a Terminate message. See WebSocket Usage
below.

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 25 of 85
R0.1

4.4.4 Terminate Session Sequence Diagrams

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 26 of 85
R0.1

4.5 Session Heartbeat

Each peer must send a heartbeat message during each interval in which no application messages were
sent. A party may send a heartbeat before its interval has expired, for example to force its peer to check
for a sequence number gap prior to sending a large batch of application messages.

A client's heartbeat timing is governed by the KeepaliveInterval value it sent in the Establish message,
and a server is governed by the value it sent in EstablishAck.

Each party should check whether it has received any message from its peer in the expected interval.
Silence is taken as evidence that the transport is no longer valid, and the session should be terminated
in that event.

For recoverable or idempotent flows, the gap detection should be achieved by sending Sequence
messages respecting the keepalive interval.

For Unsequenced and None (one-way session) flows, there is the UnsequencedHeartbeat message to
detect that a logical session has disappeared or that there is a problem with the transport, allowing the
peer to terminate session state timely and to potentially reestablish the session.

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 27 of 85
R0.1

UnsequencedHeartbeat

Field name Type Required Value Description

MessageType Enum Y UnsequencedHeartbeat

When a session is being finalized, but the FinishedReceiving message has not yet been received, then
FinishedSending message must be used as the heartbeat.

On TCP, it is recommended that Nagle algorithm be disabled to prevent the transmission of heartbeats
and other messages from being delayed, potentially causing unnecessary session termination.

4.6 Resynchronization

The following sections describe resynchronization of a recoverable flow.

4.6.1 Retransmission Request

When receiving a recoverable message flow, a peer may request sequenced messages to be
retransmitted by sending a RetransmitRequest message, which should be answered by one or more
Retransmission messages (or with a Terminate message if the request is invalid).

Only one RetransmitRequest is allowed in-flight at a time per session. Another RetransmitRequest must
not be sent until a response has been received from a previous request.

The receiver on a recoverable flow should accept messages with a higher sequence number after
recognizing a gap. However, the application should queue messages for in-sequence processing after a
requested retransmission is received.

Sending a RetransmitRequest to the sender of an Idempotent, Unsequenced or None flow is a protocol
violation. In that case, the session must be terminated.

RestransmitRequest

Field name Type Required Value Description

MessageType Enum Y RestransmitRequest

SessionId UUID Y

Timestamp nanotime Y Timestamp used as a unique identifier
of the request

FromSeqNo u64 Y Sequence number of the first message
requested

Count u32 Y Count of messages requested

4.6.2 Retransmission Responses

Retransmission implies that the subsequent messages are sequenced without requiring that a Sequence
message is passed. In a datagram-oriented transport, Retransmission is passed in every single
retransmission datagram.

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 28 of 85
R0.1

Restransmission

Field name Type Required Value Description

MessageType Enum Y Restransmission

SessionId UUID Y Defeats the need for Context when
multiplexing

RequestTimestamp nanotime Y Value from RetransmitRequest
Timestamp field. Used to match
responses to requests.

NextSeqNo u64 Y Sequence number of the next
message to be retransmitted

Count u32 Y Count of messages to be
retransmitted in a batch

4.6.2.1 Retransmission Diagram

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 29 of 85
R0.1

4.6.2.2 Interleaving and Pacing Retransmissions

This protocol does not require real-time messages to be held by the sender until retransmission of a
range of messages is complete. Rather, ranges of retransmitted and real-time messages may be
interleaved. Each time some messages are retransmitted, they must be preceded by a Retransmission
message with a count of messages. Each time real-time flow resumes, a Sequence message (or Context
message on a multiplexed flow) must be sent.

The provider of a recoverable flow need not retransmit all requested messages in a single batch. Rather,
retransmission should be executed as an iterative process. It is the requester's responsibility to
determine whether the current batch fills the original gap. If not, it should send another
RetransmitRequest for the remainder. Requests and responses should proceed iteratively until all
desired messages have been retransmitted. This interaction automatically paces the retransmission flow
while allowing real-time messages to flow through uninhibited.

Pacing is the responsibility of the retransmitter. It is managed by controlling the size of batches of
retransmitted messages. To maximize interleaving with real-time messages without queuing, it is
recommended that messages be retransmitted in small batches. Optimally, a batch should not exceed to
the size of a datagram, even on a TCP stream.

However, when retransmission is provided through a separate recovery session without interleaving
real-time messages, then the retransmitter may choose to fulfill requests in a single batch.

4.6.2.3 Retransmit Rejection

If the provider of a recoverable flow is unable to retransmit requested messages, it responds with a
RetransmitReject message.

RetransmitRejectCode = OutOfRange | InvalidSession | RequestLimitExceeded

Rejection reasons:

• OutOfRange: NextSeqNo + Count is beyond the range of sequence numbers

• InvalidSession: The specified SessionId is unknown or is not authorized for the requester to access.

• RequestLimiitExceeded: The message Count exceeds a local rule for maximum retransmission size.

RestransmitReject

Field name Type Required Value Description

MessageType Enum Y RestransmitReject

SessionId UUID Y Session identifier

RequestTimestamp nanotime Y Value from
RetransmitRequest
Timestamp field. Used
to match responses to
requests.

Code RetransmitRejectCode
Enum

Y

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 30 of 85
R0.1

Field name Type Required Value Description

Reason string N Reject reason details

4.6.3 RetransmitReject Diagram

4.6.4 Retransmission Violations

For a RetransmitRequest that the requester should have known was invalid with certainty, the sender
should terminate the session. Terminate message with ReRequestInProgress code should be sent if it
sees a premature retransmit request.

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 31 of 85
R0.1

4.6.5 Retransmit Violation Diagram

4.6.6 FIX Application Layer Recovery

As an alternative to a FIXP recoverable flow, application layer sequencing and recovery may be used. To
avoid duplication of effort in two layers of the protocol stack, application layer sequencing should be
used with a FIXP Unsequenced flow.

See FIX application specifications for a description of the ApplicationSequenceControl group and these
message types:

• ApplicationMessageReport

• ApplicationMessageRequest

• ApplicationMessageRequestAck

4.7 Finalizing a Session

Finalization is a handshake that ends a logical session when there are no more messages to exchange.

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 32 of 85
R0.1

4.7.1 Finish Sending

A FinishedSending message should be sent to begin finalizing a logical session when the last application
message in a flow has been sent.

The sender of this message awaits a FinishedReceiving response. If the wait takes longer than
KeepaliveInterval for the flow, it should send FinishedSending messages as heartbeats until finalization
is complete.

FinishedSending

Field name Type Required Value Description

MessageType Enum Y FinishedSending

SessionId UUID Y SessionId is redundant and included only for
robustness

LastSeqNo u64 N Must be populated for an idempotent or
recoverable flow

The peer should evaluate LastSeqNo to determine whether it has processed the flow to the end. If
received on a recoverable flow, the peer may send a RetransmitRequest to recover any missed
messages before acknowledging finalization of the flow. On an idempotent flow, it should send
NotApplied to notify the sender of the gap.

4.7.2 Finish Receiving

Upon processing the last application message indicated by the FinishedSending message (possibly
received on a retransmission), a FinishedReceving message must be sent in response.

When a FinishedReceiving has been received by the party that initiated the finalization handshake, a
Terminate message should be sent to unbind the transport. At that point, the session is considered
finalized, and its session ID is no longer valid.

FinishedReceiving

Field name Type Required Value Description

MessageType Enum Y FinishedReceiving

SessionId UUID Y SessionId is redundant and included only for
robustness

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 33 of 85
R0.1

4.7.3 Terminating a Recoverable Session Sequence Diagram

4.8 Idempotent Flow

When using the idempotent flow, the protocol ensures that each application message is an idempotent
operation that will be guaranteed to be applied only once.

To guarantee idempotence, a unique sequential identifier must be allocated to each operation to be
carried out. The response flow must identify which operations have been carried out, and is sequenced.
The lack of acknowledgment of an operation should trigger the operation to be reattempted (at least
once semantics). The lack of acknowledgment should be triggered by the acknowledgment of a later
operation or by the expiration of a timer. The side carrying out an operation must filter out operations
with a duplicate identifier (at most once semantics). If a transaction has already been applied, a
duplicate request should be silently dropped.

The start of a idempotent flow must be initiated with a Sequence message (or Context message on a
multiplexed transport) that explicitly provides the sequence number of the next application message in
its field NextSeqNo. The first application message after a Sequence (or Context) message has the implicit
sequence number NextSeqNo. For subsequent application messages, the sequence number is
incremented implicitly. That is, the sequence number is not sent on the wire in every application

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 34 of 85
R0.1

message, but rather, sender and receiver each should keep track of the next expected sequence
number.

As explained in section 3, a Sequence or Context message must be sent after any context switch or once
per packet on a Datagram oriented transport. Additionally, as explained in Session Heartbeat, they must
be sent as hearbeats during idle periods. After every explicit NextSeqNo, the sequence number of
subsequent application messages should be tracked implicitly.

The recoverable server return flow should report the result of operations at the application level.
Implementers may opt to use the following Applied or NotApplied messages to return the status of the
operation if a more specific application message is not provided.

4.8.1 Applied

This is an optional application response message to support an idempotent flow. Standard FIX semantics
provide application layer acknowledgements to requests, e.g. Execution Report in response to New
Order Single. The principle is to use application specific acknowledgement messages where possible; use
the Applied message where an application level acknowledgement message does not exist.

Since Applied is an application message, it will be reliably delivered if returned on a recoverable flow.

Applied

Field name Type Required Value Description

MessageType Enum Y Applied

FromSeqNo u64 Y The first applied sequence number

Count u32 Y How many messages have been applied

4.8.2 NotApplied

When a receiver on an idempotent flow recognizes a sequence number gap, it should send the
NotApplied message immediately but continue to accept messages with a higher sequence number after
the gap.

The sender on an idempotent flow uses the NotApplied message to discover which its requests have not
been acted upon. It has a responsibility to make a decision about recovery at an application layer. It may
decide to resend the transactions with new sequence numbers, to send different transactions, or to do
nothing.

Like Applied, the NotApplied message is handled as an application message. That is, it consumes a
sequence number.

It is recommended that the return flow of an idempotent request flow be recoverable to allow Applied
and NotApplied message to be resynchronized if necessary. Thus, the sender can determine with
certainty (perhaps after some delay) which requests have been accepted.

Sending NotApplied for a Recoverable, Unsequenced or None flow is a protocol violation. On a
recoverable flow, RetransmitRequest must be used instead.

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 35 of 85
R0.1

NotApplied

Field name Type Required Value Description

MessageType Enum Y NotApplied

FromSeqNo u64 Y The first not applied sequence number

Count u32 Y How many messages haven't been applied

4.8.3 Idempotent Flow Sequence Diagram

4.9 WebSocket Usage

WebSocket runs over TCP, so FIXP usage with WebSocket is largely the same as regular point-to-point
session usage, with a few exceptions listed below.

4.9.1 Message Framing

WebSocket is a message-oriented protocol. That is, it performs message framing, so an additional
framing protocol such as SOFH is unnecessary.

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 36 of 85
R0.1

WebSocket has two defined subprotocols, text and binary. The appropriate subprotocol should be used
depending on whether message encoding is character-oriented or binary.

4.9.2 Session Initiation

A WebSocket session is initiated by a client with an HTTP request and optionally, a TLS handshake. See
the FIX-over-TLS (FIXS) standard, referenced in section 1, for recommendations about authentication
and cipher suite selection.

4.9.3 Heartbeats

WebSocket protocol defines Ping and Pong frames to be used as keep-alives. However, their intervals
and message contents are not precisely defined by the protocol, and implementations may vary widely
in their behavior. Therefore, WebSocket Ping/Pong is not considered a suitable substitute for FIXP
heartbeats (Sequence or Context messages) especially since they do not convey sequence numbers
needed to rapidly detect gaps. Therefore, FIXP heartbeats should be used as specified above.

4.9.4 Termination

The FIXP Terminate message and WebSocket Close frame have practically the same behavior. In both
cases, either side can initiate closing of a transport session and the other side responds with the same
message type. No more messages may be sent after Terminate or Close. Therefore, only the WebSocket
Close frame is needed to unbind the transport from a logical session. Normally, the status code of the
Close frame is set to 1000 indicating a normal closure. Other error codes may be set as defined by the
protocol.

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 37 of 85
R0.1

5 Multicast Session Protocol

A multicast session conveys messages one way from a publisher to any number of listeners. It is
conducted over a connectionless transport such UDP multicast. Multicast session protocol is typically
used for publishing market data or common reference information to many consumers. Multiple
independent flows may be multiplexed over a shared multicast transport.

5.1 Multicast Session Lifecycle

Since a multicast transport is connectionless, there is no negotiation or binding or unbinding of the
transport as in the point-to-point protocol. Thus, Negotiation and Establishment messages and their
respective responses are not used.

Multicast addresses and publishing schedules must be provided out-of-band to listeners. To capture all
messages, listeners must be ready to receive at scheduled times. Publishing continues until the end of a
logical flow.

5.1.1 Multicast Session Establishment

Like a point-to-point session, a multicast session is identified by a UUID. Each time a session is initiated,
a new UUID must be generated, and sequence numbers of subsequent application messages must begin
with 1.

5.1.1.1 Topic Message

To associate a transient UUID to a permanent or semi-permanent classification of messages, a Topic
message must be used to initiate a flow. Multiple topics may be published on a transport.

FlowType = Recoverable | Idempotent

Valid flow types on a multicast session are:

• Recoverable: Messages are sequenced and recoverable. Since the transport is one-way,
RetransmitRequests must be delivered through a separate session, however.

• Idempotent: Messages are sequenced to allow detection of loss but any missed messages are not
recoverable.

Each Topic carries a Classification for the flow to associate it to a permanent or semi-permanent
application layer entity. Typical classifications are product types, market symbols or the like.

To support late joiners, Topic messages should be repeated at regular intervals on a session. This
specification does not dictate a specific interval, but the shorter the interval, the less time it takes for a
late joiner to identify flows. It is recommended that Topic message be sent with Session heartbeats
when the session is otherwise idle. See session heartbeat section below.

Topic

Field name Type Required Value Description

MessageType Enum Y Topic

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 38 of 85
R0.1

Field name Type Required Value Description

SessionId UUID Y Session Identifier

Flow FlowType Enum Y Type of flow from publisher

Classification Object Y Category of application messages that follow

5.1.2 Finalizing a Multicast Session

Finalization ends a logical flow when there are no more application messages to send. A multicast flow
should be finalized by transmitting a FinishedSending message. No further messages should be sent, and
the session ID is no longer valid after that.

5.2 Idempotent Flow over Multicast

The goal of an idempotent flow over multicast is to provide at-most-once delivery guarantee to each
consumer. Unlike a point-to-point session, however, there is no opportunity to return a NotApplied
message to the producer over a one-way transport if a sequence number gap is detected. Therefore, on
a multicast, an idempotent flow provides a means to detect data loss, but no direct way to notify the
producer or initiate recovery.

An idempotent flow is implemented by the producer in the same way over a multicast transport as for
point-to-point over UDP unicast. Each datagram must begin with either a Sequence message if non-
multiplexed or a Context message if the flow is sent over a multiplexed transport.

5.3 Session Heartbeat

During the lifetime of a multicast session, its publisher should send Sequence or Context messages as a
heartbeat at regular intervals when the session is otherwise inactive. This allows a receiver to tell
whether a session is live and has not reached the end of its logical flow. If only a single Topic is
published, then Sequence message may be used for heartbeats since there is no context switch. If
multiple topics are published on a shared multicast transport, then Context must be used. See the
Common Features section above for a description of sequence numbering and the Sequence and
Context messages.

In addition to the Sequence or Context message, it is recommended that a Topic message should be
published on the heartbeat interval. This provides an opportunity for late joiners to gather session
characteristics during every idle period. Summary of Session Messages

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 39 of 85
R0.1

6 Summary of Session Messages

6.1 FIXP Session Messages

Stage Message Name Purpose

R
ec

o
ve

ra
b

le

Id
em

p
o

te
n

t

U
n

se
q

u
e

n
ce

d
 /

N

o
n

e
M

u
lt

ic
as

t

Initialization Negotiate Initiates session • • •

 NegotiationResponse Accepts session • • •

 NegotiationReject Rejects session • • •

 Topic Announces a flow •

Binding Establish Binds session to transport • • •

 EstablishmentAck Accepts binding • • •

 EstablishmentReject Rejects binding • • •

Transferring Sequence Initiates a sequenced flow, keep-
alive

• • •

 Context Multiplexing • • • •

 UnsequencedHeartbeat Keep-alive •

 RetransmitRequest Requests resynchronization •

 Retransmission Resynchronization •

Unbinding Terminate1 Unbinds a transport • • •

Finalizing FinishedSending Ends a logical flow • • • •

 FinishedReceiving Ends a logical flow • • • •

6.2 Related Application Messages

These optional application messages respond to application messages on an idempotent flow.

Stage Message Name Purpose

Transferring Applied Acknowledge idempotent operations

 NotApplied Negative acknowledgement of idempotent operations

1 On WebSocket transport, Close frame is used instead of the Terminate message.

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 40 of 85
R0.1

6.3 Summary of Protocol Violations

If any of these violations by a peer is detected, the session should be immediately terminated. Any
application messages that cause a violation, such as a message sent after FinishedSending, should be
ignored.

• Sending a session message that is inappropriate to the flow type, such as a Sequence message on
an unsequenced flow. See table above.

• Sending an application message on a point-to-point session that is not in established state. That is,
prior to EstablishmentAck.

• Sending Establish without having successfully negotiated a session. That is, a NegotiationResponse
must have been received for the session.

• Sending an application message after logical flow has been finalized with FinishedSending. The
responder on a point-to-point session may not send an application message after sending
FinishedReceiving.

• Sending FinishedReceiving without having received FinishedSending from the peer.

• Sending any application or session message after sending Terminate.

• Reusing the session ID of a session that was finalized. (The server may have a practical limit of
session history to enforce this rule.)

• Sending a RetransmitRequest while a retransmission is in progress.

• Sending a RetransmitRequest with request range out of bounds. That is, it is a violation to request
a retransmission of a message with a sequence number that has not been sent yet.

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited

7 Appendix A - Usage Examples (TCP)

These use cases contain sample values for illustrative purposes only

7.1 Initialization

7.1.1 Session negotiation (both Recoverable)

Message Received Message Sent Session ID Timestamp Request Timestamp Client Flow Server Flow Credentials

Negotiate ABC T1 -- Recoverable -- 123

 NegotiationResponse ABC -- T1 -- Recoverable --

7.1.2 Session negotiation (both Unsequenced)

Message Received Message Sent Session ID Timestamp Request Timestamp Client Flow Server Flow Credentials

Negotiate ABC T1 -- Unsequenced -- 123

 NegotiationResponse ABC -- T1 -- Unsequenced --

7.1.3 Session negotiation (Client Idempotent and Server Recoverable – highly recommended)

Message Received Message Sent Session ID Timestamp Request Timestamp Client Flow Server Flow Credentials

Negotiate ABC T1 -- Idempotent -- 123

 NegotiationResponse ABC -- T1 -- Recoverable --

7.1.4 Session negotiation (Client None and Server Recoverable)

Message Received Message Sent Session ID Timestamp Request Timestamp Client Flow Server Flow Credentials

Negotiate ABC T1 -- None -- 123

 NegotiationResponse ABC -- T1 -- Unsequenced --

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 42 of 85
R0.1

7.1.5 Session negotiation (Client Unsequenced and Server Recoverable)

Message Received Message Sent Session ID Timestamp Request Timestamp Client Flow Server Flow Credentials

Negotiate ABC T1 -- Unsequenced -- 123

 NegotiationResponse ABC -- T1 -- Recoverable --

7.1.6 Session negotiation (Client None and Server Unsequenced)

Message Received Message Sent Session ID Timestamp Request Timestamp Client Flow Server Flow Credentials

Negotiate ABC T1 -- None -- 123

 NegotiationResponse ABC -- T1 -- Unsequenced --

7.1.7 Session negotiation (rejects)

7.1.7.1 Bad credentials

For example – Valid Credentials are 123 but Negotiate message is sent with Credentials as 456 then it will be rejected.

Message
Received

Message Sent Session
ID

Timestamp Request
Timestamp

Client Flow Code Reason Credentials

Negotiate ABC T1 -- Idempotent -- 456

 NegotiationReject ABC -- T1 -- Bad
Credentials

Invalid
Trader ID

--

7.1.7.2 Flow type not supported

For example – Recoverable flow from Client is not supported but Negotiate message is sent with Client Flow as Recoverable then it will be
rejected.

Message
Received

Message Sent Session
ID

Timestamp Request
Timestamp

Client Flow Code Reason Credentials

Negotiate ABC T1 -- Recoverable -- -- 123

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 43 of 85
R0.1

Message
Received

Message Sent Session
ID

Timestamp Request
Timestamp

Client Flow Code Reason Credentials

 NegotiationReject ABC -- T1 -- FlowTypeNotSupported Client
Recoverable
Flow
Prohibited

--

7.1.7.3 Invalid session ID

For example – Session ID does not follow UUID or GUID semantics as per RFC 4122 and Negotiate message is sent with Session ID as all zeros
then it will be rejected.

Message
Received

Message Sent Session
ID

Timestamp Request
Timestamp

Client Flow Code Reason Credentials

Negotiate 000 0 -- Idempotent -- -- 123

 NegotiationReject 000 -- 0 -- Unspecified Invalid SessionID
Format

--

7.1.7.4 Invalid request timestamp

For example – Timestamp follows Unix Epoch semantics and is to be sent with nanosecond level precision but Negotiate message is sent with
Timestamp as Unix Epoch but expressed as number of seconds then it will be rejected.

Message
Received

Message Sent Session
ID

Timestamp Request
Timestamp

Client Flow Code Reason Credentials

Negotiate ABC 86400 -- Idempotent -- -- 123

 NegotiationReject ABC -- 86400 -- Unspecified Invalid Timestamp
Format

--

7.1.7.5 Mismatch of sessionID/RequestTimestamp

For example – the session identifier and the request timestamp in the NegotiationResponse do not match with the Negotiate message then the
acknowledgment MUST be ignored and an internal alert may be generated followed by a new Negotiate message

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 44 of 85
R0.1

Message Received Message Sent Session
ID

Timestamp Request
Timestamp

Client Flow Server Flow Credentials

Negotiate ABC T1 -- Recoverable -- 123

 NegotiationResponse DEF -- T2 -- Recoverable --

<Ignore NegotiationResponse
message since it contains incorrect
Session ID and/or
RequestTimestamp and Generate
Internal Alert and Possibly Retry>

Negotiate XYZ T3 -- Recoverable -- 123

<New Negotiate message should
contain new Session ID>

7.1.7.6 NegotiationResponse or Reject Not Received

For example – the Negotiate message is neither accepted nor rejected and one KeepAliveInterval* has lapsed then an internal alert may be
generated followed by a new Negotiate message.

Message Received Message
Sent

Session
ID

Timestamp Request
Timestamp

Client Flow Server
Flow

Credentials

Negotiate ABC T1 -- Recoverable -- 123

<One KeepAliveInterval has lapsed
without any response>

Negotiate XYZ T3 -- Recoverable -- 123

<New Negotiate message should contain
new Session ID>

*Even though the KeepAliveInterval is part of the Establish message, generally speaking there will be a recommended value or range agreed to
by the counterparties which can serve as a catch-all for these types of scenarios.

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 45 of 85
R0.1

7.1.8 Establishment (Recoverable)

Message
Received

Message Sent Session
ID

Timestamp Request
Timestamp

Client Flow Keep Alive
Interval

Next
SeqNo

Server Flow

Negotiate ABC T1 -- Recoverable -- -- --

 NegotiationResponse ABC -- T1 -- -- -- Recoverable

Establish ABC T2 -- -- 10 1 --

 EstablishmentAck ABC -- T2 -- 10 1 --

7.1.9 Establishment (Unsequenced)

Message
Received

Message Sent Session
ID

Timestamp Request
Timestamp

Client Flow Keep Alive
Interval

Next
SeqNo

Server Flow

Negotiate ABC T1 -- Unsequenced -- -- --

 NegotiationResponse ABC -- T1 -- -- -- Unsequenced

Establish ABC T2 -- -- 10 -- --

 EstablishmentAck ABC -- T2 -- 10 -- --

7.1.10 Establishment (idempotent)

Message
Received

Message Sent Session
ID

Timestamp Request
Timestamp

Client Flow Keep Alive
Interval

Next
SeqNo

Server Flow

Negotiate ABC T1 -- Idempotent -- -- --

 NegotiationResponse ABC -- T1 -- -- -- Recoverable

Establish ABC T2 -- -- 10 1 --

 EstablishmentAck ABC -- T2 -- 10 1 --

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 46 of 85
R0.1

7.1.11 Establishment (none)

Message
Received

Message Sent Session
ID

Timestamp Request
Timestamp

Client
Flow

Keep Alive
Interval

Next
SeqNo

Server
Flow

Negotiate ABC T1 -- None -- -- --

 NegotiationResponse ABC -- T1 -- -- -- None

Establish ABC T2 -- -- 10 -- --

 EstablishmentAck ABC -- T2 -- 10 -- --

7.1.12 Establishment rejects

7.1.12.1 Unnegotiated

For example – Trying to send an Establish message without first Negotiating the session will result in the Establishment message being rejected.

Message
Received

Message Sent Session
ID

Timestamp Request
Timestamp

Code Reason Keep Alive
Interval

Establish ABC T2 -- -- -- 10

 Establishment
Reject

ABC -- T2 Unnegotiated Establishment Not Allowed
Without Negotiation

--

7.1.12.2 Already established

For example – Trying to send an Establish message when the session itself is already Negotiated and Established will result in the Establishment
message being rejected.

Message
Received

Message Sent Session
ID

Timestamp Request
Timestamp

Code Reason Keep Alive
Interval

Negotiate ABC T1 -- -- -- --

 Negotiation
Response

ABC -- T1 -- -- --

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 47 of 85
R0.1

Message
Received

Message Sent Session
ID

Timestamp Request
Timestamp

Code Reason Keep Alive
Interval

Establish ABC T2 -- -- -- 10

 EstablishmentAck ABC -- T2 -- -- 10

Establish ABC T3 -- -- -- 10

 EstablishmentReject ABC -- T3 Already
Established

Session is Already
Established

--

7.1.12.3 Session blocked

For example – if a particular Session ID has been blocked for bad behavior and is not allowed to establish a session with the counterparty then
also the Establishment message will be rejected.

Message
Received

Message Sent Session
ID

Timestamp Request
Timestamp

Code Reason Keep Alive
Interval

Negotiate ABC T1 -- -- -- --

 NegotiationResponse ABC -- T1 -- -- --

Establish ABC T2 -- -- -- 10

 EstablishmentReject ABC -- T2 Session
Blocked

Session Has Been Blocked,
Please Contact Market
Operations

10

7.1.12.4 Invalid keep alive interval

For example – if the bilateral rules of engagement permit a KeepAliveInterval no smaller than 10 milliseconds then an Establishment message
sent with a KeepAliveInterval of 1 millisecond will be rejected.

Message
Received

Message Sent Session
ID

Timestamp Request
Timestamp

Code Reason Keep Alive
Interval

Negotiate ABC T1 -- -- -- --

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 48 of 85
R0.1

Message
Received

Message Sent Session
ID

Timestamp Request
Timestamp

Code Reason Keep Alive
Interval

 NegotiationResponse ABC -- T1 -- -- --

Establish ABC T2 -- -- -- 1

 EstablishmentReject ABC -- T2 KeepAlive
Interval

Invalid KeepAlive
Interval

1

7.1.12.5 Invalid session ID

For example – Session ID does not follow UUID or GUID semantics as per RFC 4122 and Establishment message is sent with Session ID as all zeros
then it will be rejected.

Message
Received

Message Sent Session
ID

Timestamp Request
Timestamp

Code Reason Keep Alive
Interval

Negotiate ABC T1 -- -- -- --

 Negotiation
Response

ABC -- T1 -- -- --

Establish 000 T2 -- -- -- 10

 EstablishmentReject 000 -- T2 Unspecified Invalid Session ID
Format

10

7.1.12.6 Invalid request timestamp

For example – Timestamp follows Unix Epoch semantics and is to be sent with nanosecond level precision but Establishment message is sent
with Timestamp as Unix Epoch but expressed as number of seconds then it will be rejected.

Message
Received

Message Sent Session
ID

Timestamp Request
Timestamp

Code Reason Keep Alive
Interval

Negotiate ABC T1 -- -- -- --

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 49 of 85
R0.1

Message
Received

Message Sent Session
ID

Timestamp Request
Timestamp

Code Reason Keep Alive
Interval

 Negotiation
Response

ABC -- T1 -- -- --

Establish ABC 86400 -- -- -- 10

 EstablishmentReject ABC -- 86400 Unspecified Invalid Timestamp
Format

10

7.1.12.7 Bad credentials

For example – Valid Credentials are 123 but Establishment message is sent with Credentials as 456 then it will be rejected.

Message
Received

Message Sent Session
ID

Timestamp Request
Timestamp

Code Reason Credentials

Negotiate ABC T1 -- -- -- 123

 NegotiationResponse ABC -- T1 -- -- --

Establish ABC T2 -- -- -- 456

 EstablishmentReject ABC -- T2 Bad
Credentials

Invalid Trader
ID

--

7.1.12.8 Mismatch of SessionID/RequestTimestamp

For example – the session identifier and the request timestamp in the EstablishmentAck do not match with the Establishment message then the
acknowledgment MUST be ignored and an internal alert may be generated.

Message Received Message Sent Session
ID

Timestamp Request
Timestamp

Client Flow Keep
Alive
Interval

Next
SeqNo

Server Flow

Negotiate ABC T1 -- Idempotent -- -- --

 NegotiationResponse ABC -- T1 -- -- -- Recoverable

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 50 of 85
R0.1

Message Received Message Sent Session
ID

Timestamp Request
Timestamp

Client Flow Keep
Alive
Interval

Next
SeqNo

Server Flow

Establish ABC T2 -- -- 10 -- --

 EstablishmentAck DEF -- T3 -- 10 1 --

<Ignore EstablishmentAck
message since it contains
incorrect Session ID and/or
RequestTimestamp and
Generate Internal Alert and
Possibly Retry>

Establish ABC T4 -- -- 10 -- --

<New Establish message
should contain same Session
ID>

7.1.12.9 EstablishmentAck or Reject Not Received

For example – the Establish message is neither accepted nor rejected and one KeepAliveInterval has lapsed then an internal alert may be
generated followed by a new Establish message.

Message Received Message
Sent

Session
ID

Timestamp Request
Timestamp

Client Flow Server Flow Credentials KeepAliveInterval

Negotiate ABC T1 -- Idempotent -- 123

 Negotiation-
Response

ABC -- T1 -- Recoverable --

Establish ABC T2 -- -- -- -- 10

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 51 of 85
R0.1

Message Received Message
Sent

Session
ID

Timestamp Request
Timestamp

Client Flow Server Flow Credentials KeepAliveInterval

<One
KeepAliveInterval has
lapsed without any
response>

Establish ABC T3 -- -- -- -- 10

<New Establish
message should
contain same Session
ID>

7.2 Unbinding

7.2.1 Ungraceful termination (time out)

When the KeepAliveInterval has expired and no keep alive message is received then the session is terminated ungracefully and will need to be
re-established. The transport level connection is still open (TCP socket) therefore Negotiation is not required. Termination due to error does not
require the sender to wait for corresponding Terminate response from counterparty.

Message Received Message Sent Session
ID

Timestamp Request
Timestamp

Client Flow Keep
Alive
Interval

Code Reason

Negotiate ABC T1 -- Idempotent -- -- --

 NegotiationResponse ABC -- T1 -- -- -- --

Establish ABC T2 -- -- 10 -- --

 EstablishmentAck ABC -- T2 -- 10 -- --

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 52 of 85
R0.1

Message Received Message Sent Session
ID

Timestamp Request
Timestamp

Client Flow Keep
Alive
Interval

Code Reason

<Time Interval Greater
Than Keep Alive Interval
Has Lapsed Without Any
Message Being Received>

 Terminate ABC -- -- -- -- Timed
Out

Keep Alive
Interval Has
Lapsed

Establish ABC T3 -- -- 10 -- --

 EstablishmentAck ABC -- T3 -- 10 -- --

<New Establish message
should be sent with same
Session ID>

7.2.2 Ungraceful termination (sequence message received with lower sequence number)

The session could also be deliberately terminated due to Sequence message received with lower than expected sequence number and then it
will need to be re-established. The transport level connection is still open (TCP socket) therefore Negotiation is not required. Termination due to
error does not require the sender to wait for corresponding Terminate response from counterparty.

Message
Received

Message Sent Session
ID

Timestamp Request
Timestamp

Next
SeqNo

Implicit
SeqNo

Client Flow Server Flow Code Reason

Negotiate ABC T1 -- -- -- Idempotent -- -- --

 Negotiation
Response

ABC -- T1 -- -- Recoverable -- --

Establish ABC T2 -- 200 -- -- -- -- --

 EstablishmentAck ABC -- T2 1000 -- -- -- -- --

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 53 of 85
R0.1

Message
Received

Message Sent Session
ID

Timestamp Request
Timestamp

Next
SeqNo

Implicit
SeqNo

Client Flow Server Flow Code Reason

Sequence -- -- -- 100 -- -- -- -- --

 Terminate ABC -- -- -- -- -- -- Unspecified
Error

Invalid
Next-
SeqNo

Establish ABC T4 -- 200 -- Idempotent -- -- --

 EstablishmentAck ABC -- T4 1001 -- -- Recoverable -- --

<New
Establish
message
should be
sent with
same
Session
ID>

7.2.3 Ungraceful termination (establishment ack received with lower sequence number)

The session could also be deliberately terminated due to EstablishmentAck message received with lower than expected sequence number and
then it will need to be re-established. The transport level connection is still open (TCP socket) therefore Negotiation is not required. Termination
due to error does not require the sender to wait for corresponding Terminate response from counterparty.

Message
Received

Message Sent Session
ID

Timestamp Request
Timestamp

Next
SeqNo

Implicit
SeqNo

Client Flow Server Flow Code Reason

Negotiate ABC T1 -- -- -- Idempotent -- -- --

 Negotiation
Response

ABC -- T1 -- -- Recoverable -- --

Establish ABC T2 -- 200 -- -- -- -- --

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 54 of 85
R0.1

Message
Received

Message Sent Session
ID

Timestamp Request
Timestamp

Next
SeqNo

Implicit
SeqNo

Client Flow Server Flow Code Reason

 EstablishmentAck ABC -- T2 1000 -- -- -- -- --

Sequence -- -- -- 100 -- -- -- -- --

 Terminate ABC -- -- -- -- -- -- Unspecified
Error

Invalid
Next-
SeqNo

Establish ABC T4 -- 200 -- Idempotent -- -- --

 EstablishmentAck ABC -- T4 1001 -- -- Recoverable -- --

<New
Establish
message
could be
sent with
same
Session
ID>

7.2.4 Graceful Termination

Graceful termination is possible when there are no more messages to be sent for the time being and the TCP socket connection could be
disconnected for now. This allows the sender to re-establish connectivity with the same session ID as before since the session was terminated
without finalization (FinishedSending was not used to indicate logical end of flow). Graceful termination (not due to error) does require the
sender to wait for corresponding Terminate response from counterparty before disconnecting TCP socket connection. The receiver should not
attempt to initiate TCP socket disconnection since the sender will do that upon receiving the response.

Message
Received

Message Sent Session
ID

Timestamp Request
Timestamp

Next
SeqNo

Implicit
SeqNo

Client Flow Server Flow Code Reason

Negotiate ABC T1 -- -- -- Idempotent -- -- --

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 55 of 85
R0.1

Message
Received

Message Sent Session
ID

Timestamp Request
Timestamp

Next
SeqNo

Implicit
SeqNo

Client Flow Server Flow Code Reason

 Negotiation
Response

ABC -- T1 -- -- Recoverable -- --

Establish ABC T2 -- 200 -- -- -- -- --

 EstablishmentAck ABC -- T2 1000 -- -- -- -- --

Sequence -- -- -- 201 -- -- -- -- --

Terminate ABC -- -- -- -- -- -- Finished --

 Terminate ABC -- -- -- -- -- -- Finished --

<TCP socket
connection is
disconnected
by sender>

Establish ABC T4 -- 200 -- Idempotent -- -- --

 EstablishmentAck ABC -- T4 1001 -- -- Recoverable -- --

<New
Establish
message
could be sent
with same
Session ID>

7.2.5 Disconnection

When the transport level session itself (TCP socket) has been disconnected then the session needs to be Negotiated and Established.

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 56 of 85
R0.1

Message Received Message Sent Session
ID (UUID)

Timestamp Request
Timestamp

Client Flow Keep
Alive
Interval

Server Flow Reason

Negotiate ABC T1 -- Idempotent -- -- --

 NegotiationResponse ABC -- T1 -- -- Recoverable --

Establish ABC T2 -- -- 10 -- --

 EstablishmentAck ABC -- T2 -- 10 -- --

<TCP socket
connection is
disconnected>

Negotiate DEF T3 -- Idempotent -- -- --

 NegotiationResponse DEF -- T3 -- -- Recoverable --

Establish DEF T4 -- -- 10 -- --

 EstablishmentAck DEF -- T4 -- 10 -- --

<New Negotiate
message requires new
Session ID>

7.3 Transferring

7.3.1 Sequence

Over TCP – a Client could send a Sequence message at the very beginning of the session upon establishment. The counterparty would not use it
initially as it is provided in the EstablishmentAck message.

Message
Received

Message Sent Session ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

Client Flow Server Flow Implicit
SeqNo

Negotiate ABC T1 -- -- Idempotent --

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 57 of 85
R0.1

Message
Received

Message Sent Session ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

Client Flow Server Flow Implicit
SeqNo

 Negotiation
Response

ABC -- T1 -- Recoverable --

Establish ABC T2 -- 100 --

 EstablishmentAck ABC -- T2 1000 --

Sequence -- -- -- 100 --

NewOrderSingle ABC T3 -- -- -- -- 100

 ExecutionReport ABC T4 -- -- -- -- 1000

Sequence message is applicable for idempotent and recoverable flows and if received for unsequenced and none flows then issue terminate
message to sender since it is a protocol violation.

7.3.1.1 Sequence (Higher sequence number)

The Sequence, Context, EstablishmentAck and Retransmission messages are sequence forming. They turn the message flow into a sequenced
mode since they have the next implicit sequence number. Any other Session message makes the flow leave the sequenced mode. If the message
is sequence forming then the flow does not leave the sequenced mode, but the message potentially resets the sequence numbering.

For example – here the second Sequence message is increasing the NextSeqNo even though it was sent as a keep alive message within a
sequenced flow.

Message
Received

Message Sent Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

 Implicit
SeqNo

Client Flow Server Flow From
SeqNo

Count

Negotiate ABC T1 -- -- -- Idempotent -- -- --

 Negotiation
Response

ABC -- T1 -- -- -- Recoverable -- --

Establish ABC T2 -- 100 -- -- -- -- --

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 58 of 85
R0.1

Message
Received

Message Sent Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

 Implicit
SeqNo

Client Flow Server Flow From
SeqNo

Count

 Establishment
Ack

ABC -- T2 1000 -- -- -- -- --

Sequence -- -- -- 100 -- -- -- -- --

NewOrderSingle ABC T3 -- -- 100 -- -- -- --

 Execution
Report

ABC T4 -- -- 1000 -- -- -- --

Sequence -- -- -- 200 -- -- -- -- --

NewOrderSingle ABC T5 -- -- 200 -- -- -- --

 NotApplied -- -- -- -- -- -- -- 101 100

 Execution
Report

ABC T6 -- -- 1001 -- -- -- --

7.3.1.2 Sequence (Lower sequence number)

This is an example of a Sequence message being sent with a lower than expected NextSeqNo value even though it was sent as a keep alive
message within a sequenced flow.

Message
Received

Message Sent Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

 Implicit
SeqNo

Client Flow Server Flow Code Reason

Negotiate ABC T1 -- -- -- Idempotent -- -- --

 Negotiation
Response

ABC -- T1 -- -- -- Recoverable -- --

Establish ABC T2 -- 100 -- -- -- -- --

 Establishment-
Ack

ABC -- T2 1000 -- -- -- -- --

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 59 of 85
R0.1

Message
Received

Message Sent Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

 Implicit
SeqNo

Client Flow Server Flow Code Reason

Sequence -- -- -- 100 -- -- -- -- --

NewOrder-
Single

 ABC T3 -- -- 100 -- -- -- --

 Execution-
Report

ABC T4 -- -- 1000 -- -- -- --

Sequence -- -- -- 50 -- -- -- -- --

 Terminate ABC -- -- -- -- -- -- Unspecified
Error

Invalid
Next-
SeqNo

7.3.1.3 Sequence (heartbeat)

The Sequence message could also be used as a heartbeat for idempotent and recoverable flows.

Message
Received

Message Sent Session
ID (UUID)

Timestamp Request
Timestamp

Next
SeqNo

Client Flow Server Flow Keep Alive
Interval

 Implicit
SeqNo

Negotiate ABC T1 -- -- Idempotent -- -- --

 Negotiation
Response

ABC -- T1 -- Recoverable -- --

Establish ABC T2 -- 100 -- -- 10 --

 EstablishmentAck ABC -- T2 1000 -- -- 10 --

Sequence -- -- (T2+10) -- 100 -- -- -- --

 Sequence -- -- (T2+11) -- 1000 -- -- -- --

Sequence -- -- (T2+20) -- 100 -- -- -- --

 Sequence -- -- (T2+21) -- 1000 -- -- -- --

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 60 of 85
R0.1

7.3.2 Context (Multiplexing Session ID’s)

The Context message is needed to convey that a context switch is taking place from one Session ID (ABC) to another (DEF) over the same
transport. This way – two sessions (ABC & DEF) could be multiplexed over one TCP connection and there is a one to one relation between the
two such that they need to be negotiated and established independently. They will have independent sequence numbering and the value of
NextSeqNo in each EstablishmentAck response will depend on where the particular session is sequence wise. There is no need to send a Context
message before an application message if the previous application message was destined for the same session. A Context message has to be
sent before an application message if the previous application message was destined for another session. This is an example where a Context
message is necessary since the previous message was for a different session.

Message Received Message Sent Session ID (UUID) Timestamp Request Timestamp Next Seq No Implicit SeqNo

Negotiate ABC T1 -- -- --

 NegotiationResponse ABC -- T1 -- --

Establish ABC T2 -- -- --

 EstablishmentAck ABC -- T2 1000 --

Negotiate DEF T3 -- -- --

 NegotiationResponse DEF -- T3 -- --

Establish DEF T4 -- -- --

 EstablishmentAck DEF -- T4 2000 --

Context ABC -- -- 100 --

NewOrderSingle ABC T5 -- -- 100

 Context ABC -- -- 1000 --

 ExecutionReport ABC T6 -- -- 1000

Context DEF -- -- 200 --

NewOrderSingle DEF T7 -- -- 200

 Context DEF -- -- 2000 --

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 61 of 85
R0.1

Message Received Message Sent Session ID (UUID) Timestamp Request Timestamp Next Seq No Implicit SeqNo

 ExecutionReport DEF T8 -- -- 2000

7.3.2.1 Context flow using sequence

This is an example where a Context message is not necessary since the previous message was for the same session and a Sequence message will
suffice.

Message Received Message Sent Session ID (UUID) Timestamp Request Timestamp Next SeqNo Implicit SeqNo

Negotiate ABC T1 -- -- --

 NegotiationResponse ABC -- T1 -- --

Establish ABC T2 -- -- --

 EstablishmentAck ABC -- T2 1000 --

Sequence -- -- -- 100 --

NewOrderSingle ABC T3 -- -- 100

 ExecutionReport ABC T4 -- -- 1000

Negotiate DEF T5 -- -- --

 NegotiationResponse DEF -- T5 -- --

Establish DEF T6 -- -- --

 EstablishmentAck DEF -- T6 2000 --

Sequence -- -- -- 200 --

NewOrderSingle DEF T7 -- -- 200

 ExecutionReport DEF T8 -- -- 2000

7.3.3 Unsequenced Heartbeat

This message is used to keep alive the session on unsequenced and none flows.

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 62 of 85
R0.1

Message Received Message Sent Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

Client Flow Server Flow Keep
Alive
Interval

 Implicit
SeqNo

Negotiate ABC T1 -- -- Unsequenced -- -- --

 Negotiation
Response

ABC -- T1 -- Recoverable -- --

Establish ABC T2 -- 100 -- -- 10 --

 Establishment-
Ack

ABC -- T2 1000 -- -- 10 --

UnsequencedHeartbeat -- -- (T2+10) -- -- -- -- -- --

UnsequencedHeartbeat -- -- (T2+20) -- -- -- -- -- --

UnsequencedHeartbeat -- -- (T2+30) -- -- -- -- -- --

7.3.4 Retransmission Request

For recoverable flows, a Retransmission Request could be issued to recover gap in sequence numbers

Message Received Message Sent Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

 Implicit
SeqNo

Client Flow Server Flow From
SeqNo

Count

Negotiate ABC T1 -- -- -- Idempotent -- -- --

 Negotiation
Response

ABC -- T1 -- -- -- Recoverable -- --

Establish ABC T2 -- 100 -- -- -- -- --

 Establishment
Ack

ABC -- T2 1000 -- -- -- -- --

 Sequence -- -- -- 1000 -- -- -- -- --

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 63 of 85
R0.1

Message Received Message Sent Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

 Implicit
SeqNo

Client Flow Server Flow From
SeqNo

Count

 Execution
Report

ABC T3 -- -- 1100 -- -- -- --

Retransmission-
Request

 ABC T4 -- -- -- -- -- 1000 100

 Retransmission ABC -- T4 1000 -- -- -- -- 100

<100 messages
between 1000 to
1099 are replayed
and message
number 1100 is
queued for
processing after
Retransmisison is
satisfied>

Retransmission message is not applicable for idempotent, unsequenced and none flows and if received for these flows then issue terminate
message to sender since it is a protocol violation.

7.3.4.1 Retransmission (Concurrent)

More than one RetransmissionRequest is not allowed at a time and subsequent in-flight requests will lead to session termination.

Message Received Message Sent Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

 Implicit
SeqNo

Client Flow Server
Flow

From
SeqNo

Count

Negotiate ABC T1 -- -- -- Idempotent -- -- --

 Negotiation
Response

ABC -- T1 -- -- -- Recover-
able

-- --

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 64 of 85
R0.1

Message Received Message Sent Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

 Implicit
SeqNo

Client Flow Server
Flow

From
SeqNo

Count

Establish ABC T2 -- 100 -- -- -- -- --

 Establishment
Ack

ABC -- T2 1000 -- -- -- -- --

 Sequence -- -- -- 1000 -- -- -- -- --

 Execution
Report

ABC T3 -- -- 1100 -- -- -- --

Retransmission-
Request

 ABC T4 -- -- -- -- -- 1000 100

 Retransmission ABC -- T4 1000 -- -- -- -- 100

<50 messages
between 1000 and
1099 are replayed>

Retransmission-
Request

 ABC T5 -- -- -- -- -- 1050 50

 Terminate ABC -- -- -- -- -- -- -- --

<Session terminated
with TerminationCode
=
ReRequestInProgress>

7.3.4.2 Retransmission (Interleaving)

While responding back to a RetransmissionRequest it is possible that the sender could interleave real time original messages with duplicate
retransmission responses. This interleaving will happen between both flows in ranges which could be the chunk of messages which can fit into a
single datagram or packet. Each batch of duplicate replayed messages will be preceded by a Retransmission message in the same packet and
each batch of real time original messages will be preceded by a Sequence message in the same packet.

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 65 of 85
R0.1

Message Received Message Sent Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

 Implicit
SeqNo

Client
Flow

Server
Flow

From
SeqNo

Count

RetransmissionRequest ABC T1 -- -- -- -- -- 1000 100

 Retransmission ABC -- T1 1000 -- -- -- -- 50

<50 duplicate messages
between 1000 and 1049 are
replayed in first packet
which includes
Retransmission message>

<Real time messages
between 2000 and 2049 are
queued by the sender at this
time>

 Sequence 2000

<50 original real time
messages between 2000 and
2049 are sent in second
packet which includes
Sequence message>

<Duplicate messages
between 1050 and 1099 are
queued by sender at this
time>

Retransmission ABC -- T1 1050 50

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 66 of 85
R0.1

Message Received Message Sent Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

 Implicit
SeqNo

Client
Flow

Server
Flow

From
SeqNo

Count

<Second batch of 50
duplicate messages between
1050 and 1099 are send in
third packet which includes
Retransmission message>

7.3.5 Retransmission Reject

7.3.5.1 Invalid FromSeqNo

RetransmissionRequest could be rejected if the messages being requested (FromSeqNo) belong to an invalid sequence range i.e. greater than
last sent sequence number from sender.

Message
Received

Message Sent Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

 Implicit
SeqNo

Code Reason From
SeqNo

Count

Negotiate ABC T1 -- -- -- Idempotent -- -- --

 Negotiation
Response

ABC -- T1 -- -- -- Recoverable -- --

Establish ABC T2 -- 100 -- -- -- -- --

 Establishment
Ack

ABC -- T2 1000 -- -- -- -- --

 Sequence -- -- -- 1000 -- -- -- -- --

Retransmission-
Request

 ABC T3 -- -- -- -- -- 2000 100

 Retransmit-
Reject

ABC -- T3 -- -- OutOfRange Invalid
FromSeqNo

-- --

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 67 of 85
R0.1

Message
Received

Message Sent Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

 Implicit
SeqNo

Code Reason From
SeqNo

Count

<Here FromSeqNo
is greater than
last value of
NextSeqNo from
sender>

7.3.5.2 Retransmission Reject (OutOfRange)

RetransmissionRequest could be rejected if the messages being requested (FromSeqNo + Count) belong to an invalid sequence range i.e. greater
than last sent sequence number from sender.

Message Received Message Sent Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

 Implicit
SeqNo

Code Reason From
SeqNo

Count

Negotiate ABC T1 -- -- -- Idempotent -- -- --

 Negotiation
Response

ABC -- T1 -- -- -- Recoverable -- --

Establish ABC T2 -- 100 -- -- -- -- --

 Establishment
Ack

ABC -- T2 1000 -- -- -- -- --

 Sequence -- -- -- 1000 -- -- -- -- --

Retransmission-
Request

 ABC T3 -- -- -- -- -- 900 175

 Retransmit-
Reject

ABC -- T3 -- -- OutOfRange Invalid
Range

-- --

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 68 of 85
R0.1

Message Received Message Sent Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

 Implicit
SeqNo

Code Reason From
SeqNo

Count

<Here FromSeqNo
+ Count is greater
than last value of
NextSeqNo from
sender>

7.3.5.3 Retransmission Reject (Invalid Session ID)

RetransmissionRequest could be rejected if the messages are being requested with a different session ID such that it is unknown or not
authorized.

Message Received Message Sent Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

 Implicit
SeqNo

Code Reason From
SeqNo

Count

Negotiate ABC T1 -- -- -- Idempotent -- -- --

 Negotiation
Response

ABC -- T1 -- -- -- Recoverable -- --

Establish ABC T2 -- 100 -- -- -- -- --

 Establishment
Ack

ABC -- T2 1000 -- -- -- -- --

 Sequence -- -- -- 1000 -- -- -- -- --

Retransmission-
Request

 DEF T3 -- -- -- -- -- 850 50

 Retransmit-
Reject

DEF -- T3 -- -- Invalid
Session

Unknown
Session ID

-- --

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 69 of 85
R0.1

Message Received Message Sent Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

 Implicit
SeqNo

Code Reason From
SeqNo

Count

<Here DEF is an
unknown session
ID since it has not
negotiated and
established a
session>

7.3.5.4 Retransmission Reject (Request Limit Exceeded)

RetransmissionRequest could be rejected if the messages being requested exceed the limit for allowable count in each request.

Message
Received

Message Sent Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

 Implicit
SeqNo

Code Reason From
SeqNo

Count

Negotiate ABC T1 -- -- -- Idempotent -- -- --

 Negotiation
Response

ABC -- T1 -- -- -- Recoverable -- --

Establish ABC T2 -- 100 -- -- -- -- --

 Establishment
Ack

ABC -- T2 1000 -- -- -- -- --

 Sequence -- -- -- 1000 -- -- -- -- --

Retransmission-
Request

 ABC T3 -- -- -- -- -- 1 999

 Retransmit-
Reject

ABC -- T3 -- -- RequestLimit-
Exceeded

Count
Exceeds 500

-- --

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 70 of 85
R0.1

Message
Received

Message Sent Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

 Implicit
SeqNo

Code Reason From
SeqNo

Count

<Here the
Retransmisison-
Request was
rejected due to
the count of
messages
requested bring
greater than what
is supported by
the sender>

7.3.5.5 Retransmission Reject (Retrasmission Out of Bounds)

RetransmissionRequest asking to replay messages which are no longer available (for example older than three days) could also be rejected.

Message
Received

Message Sent Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

Implicit
SeqNo

From
SeqNo

Count Code Reason

Negotiate ABC T1 -- -- -- -- -- -- --

 Negotiation
Response

ABC -- T1 -- -- -- -- -- --

Establish ABC T2 -- 200 -- -- -- -- --

 Establishment-
Ack

ABC -- T2 1000 -- -- -- -- --

Retransmit-
Request

 ABC T3 -- -- -- 1 175 -- --

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 71 of 85
R0.1

Message
Received

Message Sent Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

Implicit
SeqNo

From
SeqNo

Count Code Reason

 Retransmit-
Reject

ABC -- T3 -- -- -- -- ReRequestOutOf-
Bounds

Messages
No Longer
Available

<Here the
messages
being
requested (1-
175) were
older than 72
hours>

7.4 Finalizing

7.4.1 Finished Sending & Finished Receiving

The FinishedSending message is used by the initiator to inform the acceptor that the logical flow of messages has reached its end i.e. the FIXP
session is in the process of being wound down and gracefully terminated, for example at the end of the day or at the end of the week etc. Once
the acceptor responds back with a FinishedReceiving confirmation message then the session could be half-closed i.e. no more messages will be
sent from the initiator but the acceptor could continue to send messages until it does not send a FinishedSending message itself to the
counterparty to indicate that it too has reached the end of its logical flow and it has no more messages to send.

The FinishedReceiving message is used to confirm that the FinishedSending message has been successfully received and acknowledged and that
the FIXP session could be terminated once both counterparties have sent and received a FinishedReceiving message. The initiator is then
expected to re-negotiate the session with a new SessionID.

Message
Received

Message Sent Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

Last
SeqNo

ClientFlow ServerFlow Code Reason

Negotiate ABC T1 -- -- -- Idempotent -- -- --

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 72 of 85
R0.1

Message
Received

Message Sent Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

Last
SeqNo

ClientFlow ServerFlow Code Reason

 Negotiation
Response

ABC -- T1 -- -- -- Recoverable -- --

Establish ABC T2 -- 200 -- --- -- -- --

 Establishment-
Ack

ABC -- T2 1000 -- -- -- -- --

NewOrderSingle ABC T3 -- -- -- -- -- -- --

 Eecution-
Report

ABC -- T3 -- -- -- -- -- --

FinishedSending ABC -- -- -- 201 -- -- -- --

 Finished-
Receiving

ABC -- -- -- -- -- -- -- --

 Finished-
Sending

ABC -- -- -- 1001 -- -- -- --

FinishedReceiving ABC -- -- -- -- -- -- -- --

Terminate ABC -- -- -- -- -- -- Finished --

 Terminate ABC -- -- -- -- -- -- Finished --

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 73 of 85
R0.1

Message
Received

Message Sent Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

Last
SeqNo

ClientFlow ServerFlow Code Reason

Here the initiator
has sent the
Terminate
message but
either
counterparty
could have sent it
since both have
sent and received
a Finished-
Receiving
message. The TCP
socket connection
is disconnected by
the initiator upon
receipt of the
corresponding
Terminate ack.

Negotiate DEF T4 -- -- -- -- -- -- --

 Negotiation-
Response

DEF -- T4 -- -- -- -- -- --

7.4.2 Finished Sending & No Response Received

If the initiator has sent a FinishedSending message and does not receive a corresponding FinishedReceiving response from the counterparty
within one KeepAliveInterval then it is supposed to keep sending the FinishedSending message until it hears back at the rate of one per
KeepAliveInterval i.e. use it as a proxy for the Heartbeat message.

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 74 of 85
R0.1

Message Received Message
Sent

Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

LastSeqNo Code Reason

FinishedSending ABC -- -- -- 201 -- --

One <KeepAliveInterval> lapses without any
corresponding FinishedReceived response from
the counterparty

FinishedSending ABC -- -- -- 201 -- --

One <KeepAliveInterval> lapses without any
corresponding FinishedReceived response from
the counterparty

FinishedSending ABC -- -- -- 201 -- --

 Finished-
Receiving

ABC -- -- -- --

Even though multiple <FinishedSending>
messages have been sent, a single
<FinishedReceiving> response is sufficient to
assume that the session could be terminated i.e.
there is no need to wait for separate
<FinishedReceving> responses for each
<FinishedSending> request sent and the initiator
could now terminate the session

7.4.3 Finished Sending & Recoverable Flow

Upon receiving the FinishedSending message, if the counterparty detects a gap in the sequence by scrutinizing the <LastSeqNo> field (which is
literal and not implied) then it will attempt to recover this gap in a recoverable flow before responding back with a corresponding
FinishedReceiving confirmation message.

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 75 of 85
R0.1

Message Received Message Sent Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

LastSeqNo FromSeqNo Count Code

FinishedSending ABC -- -- -- 201 -- -- --

Last implicit sequence number
or value of <NextSeqNo> from
ABC is 198 therefore acceptor
issues a <Retransmission-
Request> to recover sequence
gap of four messages (198-201)
assuming that ABC was using
recoverable flow

 Retransmission-
Request

ABC T1 -- -- -- 198 4 --

Retransmit ABC -- T1 198 -- -- 4 --

Initiator replays messages in
requested sequence range
between 198-201 and acceptor
processes these messages and
responds back with
corresponding
acknowledgements. The
initiator should be ready to
process these
acknowledgements from
acceptor in response to
retransmission even after
sending a <FinishedSending>
message

 Finished-
Receiving

ABC -- -- -- -- -- -- --

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 76 of 85
R0.1

Message Received Message Sent Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

LastSeqNo FromSeqNo Count Code

Since the acceptor’s
retransmission request has
been satisfied, it then proceeds
to reply back with a <Finished-
Receiving> message so that the
initiator’s logical flow of
messages could cease.

7.4.4 Finished Sending & Termination

The party which wishes to cease logical flow of messages from its connection at the end of the day, end of the week or upon market close should
wait until the other counterparty is also ready to do the same before attempting to terminate the connection otherwise this will be regarded as
a protocol violation and will result in an ungraceful termination of the connection by the other party which has not yet had the opportunity to
cease logical flow of its own messages.

Message
Received

Message
Sent

Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

LastSeqNo FromSeqNo Count Code Reason

Finished-
Sending

 ABC -- -- -- 201 -- -- -- --

 Finished-
Receiving

ABC -- -- -- -- -- -- -- --

Terminate ABC -- -- -- -- -- -- Finished --

 Terminate ABC -- -- -- -- -- -- Unspecified
Error

Logical Flow
Interrupted

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 77 of 85
R0.1

7.4.5 Finished Sending & Further Message Flow

The party which wishes to cease logical flow of messages from its connection at the end of the day, end of the week or upon market close should
not send any other message after the first FinishedSending message has been sent. The only exception to this rule is the Retransmission
message and replayed messages (in response to RetransmissionRequest from counterparty if it detects a gap based on the value of LastSeqNo).
If it sends any other message either (FIXP or application) then it will lead to ungraceful termination by the other counterparty since this is a
protocol violation. This should be avoided at all costs since if the other counterparty is trying to recover a gap in sequence then that will be
aborted.

Message
Received

Message
Sent

Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

LastSeqNo FromSeqNo Count Code Reason

FinishedSending ABC -- -- -- 201 -- -- -- --

 Finished-
Receiving

ABC -- -- -- -- -- -- -- --

Sequence ABC -- -- 202 -- -- -- -- --

 Terminate ABC -- -- -- -- -- -- Unspecified
Error

Logical Flow
Cannot
Resume
After
Finalization

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 78 of 85
R0.1

Message
Received

Message
Sent

Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

LastSeqNo FromSeqNo Count Code Reason

Here a
Sequence
message was
sent after the
counterparty
responded back
with a Finished
Receiving
message and it
led to an
ungraceful
termination

FinishedSending ABC -- -- -- 201 -- -- -- --

Sequence ABC -- -- 202 -- -- -- -- --

 Terminate ABC -- -- -- -- -- -- Unspecified
Error

Logical Flow
Cannot
Resume
After
Finalization

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 79 of 85
R0.1

Message
Received

Message
Sent

Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

LastSeqNo FromSeqNo Count Code Reason

Here a
Sequence
message was
sent before the
counterparty
could respond
back with a
Finished
Receiving
message and it
too led to an
ungraceful
termination

7.4.6 Finished Sending & Half-Close

Once one of the two parties has ceased logical flow of messages from its connection at the end of the day, end of the week or upon market close
then it should still be ready and able to accept messages from the other counterparty till the time that the counterparty itself does not cease
logical flow of messages from its own connection. However this should not lead to any corresponding output back from the connection which
has been half-closed (with the exception of Retransmission) since that would be a protocol violation and lead to ungraceful termination.

Message
Received

Message
Sent

Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

Last
SeqNo

ClientFlow ServerFlow Code Reason

FinishedSending ABC -- -- -- 201 -- -- -- --

 Finished-
Receiving

ABC -- -- -- -- -- -- -- --

 Eecution-
Report

ABC -- T5 -- -- -- -- -- --

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 80 of 85
R0.1

Message
Received

Message
Sent

Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

Last
SeqNo

ClientFlow ServerFlow Code Reason

 Eecution-
Report

ABC -- T6 -- -- -- -- -- --

Retransmission-
Request

 ABC T7 -- -- -- -- -- -- --

 Terminate ABC -- -- -- -- -- -- Unspecified
Error

-- Logical
Flow
Cannot
Resume
After
Finalization

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 81 of 85
R0.1

Message
Received

Message
Sent

Session
ID
(UUID)

Timestamp Request
Timestamp

Next
SeqNo

Last
SeqNo

ClientFlow ServerFlow Code Reason

Here the initiator
has sent a
Retransmission-
Request message
after ceasing
logical flow of
messages from
its own
connection while
continuing to
accept message
flow from
acceptor and this
will result in an
ungraceful
termination since
the initiator can
only respond
back to a
Retransmisison-
Request but
cannot initiate
one of its own
after half-closing
its connection.

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 82 of 85
R0.1

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 83 of 85
R0.1

FIXP Technical Standard v1.1 RC1.docx Dec. 20, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 84 of 85
R0.1

8 Appendix B – FIXP Rules of Engagement

This checklist is an aid to specifying a full protocol stack to be used for communication between
counterparties

Stack layer Client Server

Application Layer

Application level recovery
supported?

FIX version

Service pack

Extension packs

Presentation Layer

Message encoding

Version

Schema/templates

Framing

Session Layer

Supported flow types

Security protocols

Authentication

Transport Layer

Transports supported

Other network protocols

FIX Performance Session Layer – Draft Standard v1.0 August 8, 2018

© Copyright, 2013-2018, FIX Protocol, Limited Page 85 of 85
R0.1

