

© Copyright, 2010-2021, FIX Protocol, Limited

FIX Algorithmic Trading Definition Language
(FIXatdl®)
Technical Specification

Version 1.2 – Release Candidate 1 – May 20, 2021

THIS DOCUMENT IS A RELEASE CANDIDATE FOR A PROPOSED FIX TECHNICAL STANDARD. A RELEASE
CANDIDATE HAS BEEN APPROVED BY THE GLOBAL TECHNICAL COMMITTEE AS AN INITIAL STEP IN
CREATING A NEW FIX TECHNICAL STANDARD. POTENTIAL ADOPTERS ARE STRONGLY ENCOURAGED TO
BEGIN WORKING WITH THE RELEASE CANDIDATE AND TO PROVIDE FEEDBACK TO THE GLOBAL
TECHNICAL COMMITTEE AND THE WORKING GROUP THAT SUBMITTED THE PROPOSAL. THE
FEEDBACK TO THE RELEASE CANDIDATE WILL DETERMINE IF ANOTHER REVISION AND RELEASE
CANDIDATE IS NECESSARY OR IF THE RELEASE CANDIDATE CAN BE PROMOTED TO BECOME A FIX
TECHNICAL STANDARD DRAFT.

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 2 of 70

Table of Contents

1 Introduction ... 5

1.1 Audience ... 5

2 FIXatdl® Schema Files ... 6

3 Key Concepts.. 7

3.1 Element Hierarchy .. 7

3.2 Parameter Description ... 9

3.3 Validation Rules .. 10

3.4 GUI Layout Description .. 11
3.4.1 Enable/Disable Clock Controls ... 13
3.4.2 Duration as an Alternative to Expiration Time .. 15
3.4.3 Grid Layout for Strategy Panels ... 17

3.4.3.1 Error Conditions ... 19

3.5 Flow Control Rules.. 19

3.6 Parameter-to-Control Bindings .. 21

3.7 Transport of Strategy Parameters .. 22

3.8 Support for Basket, List and Multileg Order Types .. 23
3.8.1 Order Delivery .. 23
3.8.2 Leg Count ... 23
3.8.3 Linking and Sequencing of Single Orders... 23
3.8.4 Parameter Scope .. 24
3.8.5 Cancel/Modify of Legs ... 24
3.8.6 Validation of Leg Parameter Values .. 24
3.8.7 Display/Layout of Leg Parameters ... 25
3.8.8 GUI State Rule for Leg Panel Controls ... 25
3.8.9 Vendor Configurations ... 25

3.9 Additional Global Definitions ... 27

3.10 OMS Hooks ... 27
3.10.1 Validation Rules with References to Standard FIX Fields .. 27
3.10.2 Filtering according to OMS Environment Values ... 28

4 Element Definitions .. 30

5 Attribute Definitions of Elements .. 34

5.1 Client Element .. 34

5.2 Control Element ... 34

5.3 Country Element... 40

5.4 Edit Element ... 40

5.5 EnumPair Element .. 41

5.6 Filter Element ... 41

5.7 FixMsg Element .. 42

5.8 ListItem Element... 42

5.9 Market Element .. 42

5.10 Parameter Element .. 42

5.11 Region Element .. 49

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 3 of 70

5.12 RepeatingGroup Element ... 49

5.13 SecurityType Element ... 50

5.14 StateRule Element .. 50

5.15 Strategies Element ... 51

5.16 Strategy Element .. 51

5.17 StrategyEdit Element .. 54

5.18 StrategyPanel Element ... 54

5.19 VendorConfig Element ... 55

6 Type Definitions ... 56

7 Abstract Element Extensions ... 60

7.1 Parameter Element Extension .. 60

7.2 Control Element Extension ... 62

8 Dependencies and Structural Constraints beyond XML Schema .. 65

9 A Sample FIXatdl® Document .. 66

Appendix 1 - LocalMktTz Type .. 70

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 4 of 70

DISCLAIMER
THE INFORMATION CONTAINED HEREIN AND THE FINANCIAL INFORMATION EXCHANGE PROTOCOL (COLLECTIVELY,
THE “FIX PROTOCOL”) ARE PROVIDED “AS IS” AND NO PERSON OR ENTITY ASSOCIATED WITH THE FIX PROTOCOL
MAKES ANY REPRESENTATION OR WARRANTY, EXPRESS OR IMPLIED, AS TO THE FIX PROTOCOL (OR THE RESULTS TO
BE OBTAINED BY THE USE THEREOF) OR ANY OTHER MATTER AND EACH SUCH PERSON AND ENTITY SPECIFICALLY
DISCLAIMS ANY WARRANTY OF ORIGINALITY, ACCURACY, COMPLETENESS, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. SUCH PERSONS AND ENTITIES DO NOT WARRANT THAT THE FIX PROTOCOL WILL CONFORM
TO ANY DESCRIPTION THEREOF OR BE FREE OF ERRORS. THE ENTIRE RISK OF ANY USE OF THE FIX PROTOCOL IS
ASSUMED BY THE USER.

NO PERSON OR ENTITY ASSOCIATED WITH THE FIX PROTOCOL SHALL HAVE ANY LIABILITY FOR DAMAGES OF ANY KIND
ARISING IN ANY MANNER OUT OF OR IN CONNECTION WITH ANY USER’S USE OF (OR ANY INABILITY TO USE) THE FIX
PROTOCOL, WHETHER DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL (INCLUDING, WITHOUT
LIMITATION, LOSS OF DATA, LOSS OF USE, CLAIMS OF THIRD PARTIES OR LOST PROFITS OR REVENUES OR OTHER
ECONOMIC LOSS), WHETHER IN TORT (INCLUDING NEGLIGENCE AND STRICT LIABILITY), CONTRACT OR OTHERWISE,
WHETHER OR NOT ANY SUCH PERSON OR ENTITY HAS BEEN ADVISED OF, OR OTHERWISE MIGHT HAVE ANTICIPATED
THE POSSIBILITY OF, SUCH DAMAGES.

DRAFT OR NOT RATIFIED PROPOSALS (REFER TO PROPOSAL STATUS AND/OR SUBMISSION STATUS ON COVER PAGE)
ARE PROVIDED “AS IS” TO INTERESTED PARTIES FOR DISCUSSION ONLY. PARTIES THAT CHOOSE TO IMPLEMENT THIS
DRAFT PROPOSAL DO SO AT THEIR OWN RISK. IT IS A DRAFT DOCUMENT AND MAY BE UPDATED, REPLACED, OR
MADE OBSOLETE BY OTHER DOCUMENTS AT ANY TIME. THE FIX GLOBAL TECHNICAL COMMITTEE WILL NOT ALLOW
EARLY IMPLEMENTATION TO CONSTRAIN ITS ABILITY TO MAKE CHANGES TO THIS SPECIFICATION PRIOR TO FINAL
RELEASE. IT IS INAPPROPRIATE TO USE FIX WORKING DRAFTS AS REFERENCE MATERIAL OR TO CITE THEM AS OTHER
THAN “WORKS IN PROGRESS”. THE FIX GLOBAL TECHNICAL COMMITTEE WILL ISSUE, UPON COMPLETION OF REVIEW
AND RATIFICATION, AN OFFICIAL STATUS (“APPROVED”) OF/FOR THE PROPOSAL AND A RELEASE NUMBER.

No proprietary or ownership interest of any kind is granted with respect to the FIX Protocol (or any rights therein),
except as expressly set out in FIX Protocol Limited’s Copyright and Acceptable Use Policy.

© Copyright 2010-2021 FIX Protocol Limited, all rights reserved

FIX Technical Standard Specifications by FIX Protocol Ltd. are licensed under a Creative Commons Attribution-
NoDerivatives 4.0 International License. Based on a work at https://github.com/FIXTradingCommunity/.

https://www.fixtradingcommunity.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://github.com/FIXTradingCommunity/

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 5 of 70

1 Introduction

This document serves as a specification of the FIX Algorithmic Trading Definition Language (FIXatdl®), a markup
language that works in conjunction with the FIX Protocol. FIXatdl® is used to define the FIX interface of algorithmic
order types. An algorithmic order interface description consists of: a description of tags that are to be included in FIX
NewOrderSingle(35=D), OrderCancelRequest(35=F), and OrderCancelReplaceRequest(35=G) messages that are to be
sent to an order recipient; rules for validating the data entered into an order form by a user; suggestions on how to
render GUI controls within an order entry form; and rules affecting the visual state of the GUI controls as information
is being entered into the order form.

Rather than describing interfaces in a natural language, such as English, which can be subject to differing
interpretations, FIXatdl® standardizes the way algorithmic interfaces are described thus reducing interpretation errors
and allowing for the creation of documents in a machine-readable format. It is envisioned that applications supporting
this standard would be able to receive an XML document conforming to FIXatdl® and, based on the information within
this document, be able to:

• Dynamically display an order ticket containing algorithmic order parameters.

• Change the visual state of GUI controls based on user input.

• Validate the values entered into the ticket before an order is transmitted.

• Create and transmit a FIX order message with the appropriate standard and/or user-defined fields (UDFs)
populated.

These capabilities are achievable without the need for custom software development or subsequent product
deployment.

1.1 Audience

This specification is intended for those interested in either: (1) developing applications with FIX order entry
capabilities supporting order type definition via FIXatdl®; or (2) algorithmic order providers who wish to describe the
interface to their algorithms in FIXatdl®.

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 6 of 70

2 FIXatdl® Schema Files

A set of XML Schema files has been created to describe the structure of a FIXatdl® document instance. These files can
be used with commercial XML parsing software to validate a FIXatdl® document instance. They can also be used with
XML data binding utilities to generate source code which maps classes to XML representations. The files are grouped
into two functional categories:

• Data Contract – Defines the wire-value interface of an algorithmic order. For each algorithm/strategy it
defines the valid set of parameters and availability of the strategy for specific markets. For each parameter
of an algorithm/strategy it defines the type; the legal range of values (including minimum and maximum
values); whether it is optional or required; and value constraints based on certain conditions or the value
of other parameters (validation rules).

• GUI – Defines the recommended GUI controls that should be rendered on the order entry screen and their
location on the screen. Defines the rules that affect the state of a GUI control. Provides a mapping of the
on screen controls with the parameters of the data contract.

The constructs of the schema files have been categorized this way to ensure that the data contract is de-coupled from
the GUI. This provides some flexibility for E/OMS vendors in how FIXatdl® is applied. For example, data contract
functions, such as parameter validation, may be performed in an application downstream from the E/OMS without
the need for the XML that describes the GUI.

The FIXatdl® language definition is contained within six XML Schema files:

XML Schema file / namespace Purpose

fixatdl-core-1-2.xsd

http://www.fixprotocol.org/FIXatdl-1-
2/Core

Data: Defines attributes and elements that are used to describe the data
content of the algorithm and the parameters.

fixatdl-validation-1-2.xsd

http://www.fixprotocol.org/FIXatdl-1-
2/Validation

Data: Defines attributes and elements used to author rules that are applied
to the parameter values as a validation check. These rules can be simple
where boundary conditions are checked, or complex where compound
boolean expressions involving several parameters are evaluated.

fixatdl-layout-1-2.xsd

http://www.fixprotocol.org/FIXatdl-1-
2/Layout

GUI: XML constructs to describe how a parameter should be rendered
within a user interface – this includes recommendations about GUI controls
and their relative location within the interface.

fixatdl-flow-1-2.xsd

http://www.fixprotocol.org/FIXatdl-1-
2/Flow

GUI: Provides the ability to dynamically affect the behavior of a GUI control.
Rules can be created to enable or disable parameters based on values
entered by the user in other parameters.

fixatdl-regions-1-2.xsd

http://www.fixprotocol.org/FIXatdl-1-
2/Regions

Data: Enumeration values for countries within three regions: TheAmericas,
EuropeMiddleEastAfrica and AsiaPacificJapan.

fixatdl-timezones-1-2.xsd

http://www.fixprotocol.org/FIXatdl-1-
2/Timezones

Data: Lists enumeration values for world timezones based on zoneinfo
database.

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 7 of 70

3 Key Concepts

3.1 Element Hierarchy

The FIXatdl® schema provides a set of XML elements that are used to create a conforming FIXatdl® document. These
elements are described later in this section. The attributes of each of these elements are described in latter in this
document.

In a FIXatdl® document an algorithm provider can define any number of algorithmic order interfaces by using multiple
Strategy elements. Each strategy is identified by a unique name that must be provided in the XML of each of the
Strategy elements. Instances of documents begin with the root element Strategies and follow the hierarchy:

<Strategies>
 <Strategy>
 ... strategy definition ...

 </Strategy>
 <Strategy>
 ... strategy definition ...

 </Strategy>
 ...

 <Strategy>
 ... strategy definition ...

 </Strategy>
</Strategies>

At the root level, the algorithm provider must specify which tag to use to identify the individual strategies. (At one
time TargetStrategy(847) was intended to carry this information. However, most providers use a user-defined field for
this purpose.) For example to indicate that tag 25009 will be used to identify strategies the Strategies element
would be written as

<Strategies strategyIdentifierTag="25009"/>

Parameters for each strategy are defined via Parameter elements. Validation rules are defined via StrategyEdit
elements. Each strategy can have any number of parameters or validation rules. An algorithm can have only one
section where the layout of the controls is defined. A layout is defined via the StrategyLayout element. So when
looking deeper into the strategy definition, one can see that it follows the hierarchy:

<Strategy>
 <Parameter>
 <Parameter>
 ...

 <Parameter>
 <StrategyEdit>
 <StrategyEdit>
 ...

 <StrategyEdit>
 <StrategyLayout>
</Strategy>

The following figure shows the hierarchy of elements in tree form starting from the root element, Strategies. The
XML Schema values minOccurs and maxOccurs are given for each branch of the tree. Elements with optional or
required child elements are indicated by double-line borders. Elements with no children (leaf nodes) have single-line
borders. Abstract elements, ones which require the use of a substitution group, are shaded. The elements
Parameter, StrategyLayout, and StrategyEdit are somewhat complex; the hierarchy of their children is shown
in figures 2 through 4.

Note that the figures that follow are intended to give a generalized structure of the schema and do not necessarily
show all the child elements. Please refer to the FIXatdl® XML Schema files for a complete list and definition of the
FIXatdl® elements.

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 8 of 70

Figure 1 — Root Element Hierarchy

The following figure gives the hierarchy of elements descending from the Parameter element.

Figure 2 — Parameter Hierarchy

The following figure gives the hierarchy of elements descending from the StrategyLayout element. This element is
responsible for binding GUI controls to parameters and describing their arrangement on the order-entry screen.

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 9 of 70

Figure 3 — StrategyLayout Hierarchy

The following figure shows the StrategyEdit hierarchy. This element is used to describe validation rules which are
applied to the values of a strategy’s parameters at order-generation time. Each StrategyEdit element must contain
a single Edit element (may contain further nested Edit rules) which is used to describe a particular condition that
must be met in order to pass validation.

Figure 4 — StrategyEdit Hierarchy

3.2 Parameter Description

The interface of an algorithmic order type is described by a set of FIX messages, the required, optional and user-
defined fields of those messages, and user-defined restrictions on the range of values for particular fields. In general,
when speaking of the parameters of an algorithmic order one is, in fact, referring to the user-defined fields of a
NewOrderSingle(35=D), OrderCancelRequest(35=F), and OrderCancelReplaceRequest(35=G) message. (In some cases
a parameter may also refer to a standard FIX field, one with a tag number in the range 1-5000, that broker-dealers
commonly included in their algorithmic interface specifications, such as EffectiveTime(168) and ExpireTime(128).)

Parameters are strictly described in FIXatdl® by the target firm who will receive them (order recipients), and are
communicated via an XML file to various senders (order initiators). To describe these parameters, FIXatdl® provides
the Parameter element. Parameter elements are identified by their “name” attribute. There is no limit to the
number of parameters a strategy may have as long as each is uniquely identified at the strategy level. Besides a
parameter’s name, other parameter attributes include: its type; its maximum and minimum values (if applicable); its
corresponding FIX tag number; and its usage (optional vs. required). For example, the following code snippet
describes an integer type parameter:

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 10 of 70

<Parameter name="SampleRate" xsi:type="Int_t" fixTag="28000"
use="optional" minValue="1" maxValue="9"/>

This listing describes a parameter named “SampleRate” which can optionally be populated in tag 28000 of an order
message. The attributes “minValue” and “maxValue” describe the minimum and maximum values that the recipient of
an order message is expecting. Orders with “SampleRate” values outside that range may be rejected. The attribute
“xsi:type” describes the parameter’s type which must be one of the datatypes specified by the FIX Protocol. FIXatdl®
provides enumeration values for xsi:type that map directly to the FIX datatypes. (An explanation of xsi:type can be
found in this document in the section Abstract Element Extensions.)

For certain parameters it may be appropriate to limit the legal values to a set of enumerated values. This is done by
adding child EnumPair elements to the Parameter element. Each EnumPair represents one of the enumerated
values expected to be transmitted over the wire. For example:

<Parameter name="Aggression" xsi:type="Char_t" fixTag="28001" use="required">
 <EnumPair enumID="low" wireValue="L"/>
 <EnumPair enumID="medium" wireValue="M"/>
 <EnumPair enumID="high" wireValue="H"/>
</Parameter>

This describes the “Aggression” parameter. An order recipient would expect to receive one of the values, “L”, “M” or
“H” in tag 8001 of an order message. The attribute EnumPair/@enumID is a unique identifier of EnumPair elements.

If a user of an order-entry system were to submit an order with “SampleRate” set to 5 and “Aggression” set to “high”,
the order recipient would expect to receive a FIX message containing a substring similar to:

...35=D|11=0001|55=AXP|44=77.25| ... 28000=5|28001=H ...

3.3 Validation Rules

Validation rules are defined by use of the StrategyEdit element. This XML element enables the creation of complex
and conditional rules which can be applied to the orders generated by an E/OMS. The goal of a validation rule is to
process the

values of the strategy parameters after they have been entered by the user. Each validation rule consists of a
condition and an error message. If the condition is true then the values of the parameters are valid. If the condition is
false, then the values of the parameters are invalid and the provided error message should be displayed. That is to
say, validation conditions are much like assertions. When an assertion has failed an error has occurred.

The conditions described within a validation rule are defined by use of the Edit element. An Edit element defines a
Boolean expression where values of parameters can be compared to one another or to constant values.

To illustrate, consider the most common parameters of all algorithms, StartTime and EndTime. Their description
and a rule guaranteeing that StartTime precedes EndTime can be described by the following statements:

<Parameter name="StartTime" xsi:type="UTCTimestamp_t" fixTag="28005" use="required">
<Parameter name="EndTime" xsi:type="UTCTimestamp_t" fixTag="28006" use="required">
<StrategyEdit errorMessage="Start Time must precede End Time.">
 <Edit field="StartTime" operator="LT" field2="EndTime"/>
</StrategyEdit>

Here both StartTime and EndTime are defined as UTCTimestamp parameters. At validation time, the rule described
in the StrategyEdit element instructs the E/OMS to perform an evaluation of the Boolean expression provided by
the Edit element. In this case a comparison of StartTime and EndTime will be made using the “LT” (less than)
operator. If StartTime is less than EndTime then the parameter values are deemed to be valid. However, if
StartTime is greater than or equal to EndTime then the parameter values are invalid and the E/OMS can inform the
user by displaying the error message in a dialog box.

For more complex rules, Boolean expression may be formed by multiple Edit elements organized in an expression
tree using logical operators AND, OR, XOR and NOT. For example consider these declarations:

<Parameter name="ParticipationRate" xsi:type="Float_t" fixTag="28008" use="optional"/>
<StrategyEdit errorMessage="If Participation Rate is entered it must be between 1 and 50">

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 11 of 70

 <Edit logicOperator="OR">
 <Edit field="ParticipationRate" operator="NX"/>
 <Edit logicOperator="AND">
 <Edit field="ParticipationRate" operator="GE" value="1"/>
 <Edit field="ParticipationRate" operator="LE" value="50"/>
 </Edit>
 </Edit>
</StrategyEdit>

This is a tree of Edit elements. The root Edit element is describing a logical “OR” condition asserting that either
“ParticipationRate” was not provided or its value is in the range from 1 to 50. Note how in the “AND” expression a
parameter value is compared not to another parameter but to a constant value.

Also note that the logical operators, AND and OR, can have more than two operands. Furthermore, they both perform
short-circuit evaluation of their operands. (I.e. their operands are evaluated from left to right. As soon as the value is
known, evaluation of the expression stops and the value is returned. Consequently, not all operands need to be
evaluated. For example, consider the previous example in which “ParticipationRate” is an optional parameter. It is
quite possible that the user does not provide a value for “ParticipationRate”. If that is the case then evaluation of the
“OR” statement will terminate after it is established that its first operand, <Edit field="ParticipationRate"
operator="NX"/>, is true. The “AND” statement that follows is never evaluated – which is a good result since, if one
attempts to evaluate it, it is quite possible that a “Null Reference” error would occur.) That being the case, it is
important that XML parsing or binding libraries maintain the order of the elements as they appear; otherwise
unexpected results may occur.

The logical operator XOR can also have more than two operands. As a convention, XOR is defined as “one and only
one”, which means it evaluates to “true” when one and only one of its operands is true. If none or more than one of
its operands is true then XOR is false. Short-circuit evaluation cannot be applied to XOR.

The “field” attribute of an Edit element is not restricted to strategy parameters. Standard order tags (those not
described in a FIXatdl® instance but nevertheless are required tags of order, cancel and cancel/replace messages) may
also be used to create Boolean expressions.

For example:

<StrategyEdit errorMessage="For IOC orders Participation Rate must
be between 1 and 25">
 <Edit logicOperator="OR">
 <Edit field="FIX_TimeInForce" operator="NX"/>
 <Edit field="FIX_TimeInForce" operator="NE" value="3"/>
 <Edit logicOperator="AND">
 <Edit field="ParticipationRate" operator="GE" value="1"/>
 <Edit field="ParticipationRate" operator="LE" value="25"/>
 </Edit>
 </Edit>
</StrategyEdit>

This rule incorporates the value of TimeInForce(59) which is a standard tag found in most order messages. The values
associated with standard tags are those that are sent over the wire. For example, TimeInForce(59) is an enumeration
of char values ranging from “0” to “9” and “A” to “C” (FIX Latest as of EP266). So care must be taken to assure the
corresponding operand, “value”, is of a similar type. Support for these types of expressions is highly dependent on a
vendor’s implementation of FIXatdl®. Not all standard tags may be available.

In cases where the field attribute is not recognized or not supported, the rule containing the offending Edit element
should be skipped over by a vendor’s application and should not cause a validation error. The end-result will be the
same as if the condition of the rule were true.

3.4 GUI Layout Description

In order to render a parameter within an order entry screen, an OMS must be able to pick an appropriate GUI control
to display. For instance, a parameter representing a price would best be rendered as a number spinner control while a
parameter representing a choice between limited numbers of values, such as “High”, “Medium” and “Low”, would
best be rendered as a combo box.

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 12 of 70

Once the GUI controls have been selected, the OMS must appropriately arrange them on the screen. By using the
elements and attributes of the Layout Schema, an algorithm provider can describe the GUI controls to use and
describe how they should be arranged on the screen.

FIXatdl® does not attempt to dictate user-interface style or look-and-feel. It is designed to be platform neutral. The
components that are provided are those typically found in .Net, Java and Web environments.

The layout schema allows GUI controls to be arranged by adding them to a container define by the StrategyPanel
element. Controls within a panel may be arranged either vertically or horizontally. Panels themselves may be nested
and arranged either vertically or horizontally as well. The attributes of the StrategyPanel element include

• Title – a string representing the panel title which may or may not be displayed

• Collapsible – a Boolean value indicating whether the panel can be collapsed.

• Collapsed – a Boolean value indicating the panel’s initial state.

• Orientation – defines whether the panel’s components should be vertically, horizontally or grid aligned.

An important aspect of the GUI description is that it is platform neutral. The algorithm provider describes GUI controls
without knowing how an E/OMS has been implemented or knowledge of the widget toolkit that it uses. The controls
provided by FIXatdl® are those typically found in .Net, Java or Web environments. (The initial intention was to adopt a
standard such as XAML or XUL. However, it was believed that this would put an excessive constraint on the E/OMS
vendors. So a conscious decision was made not to adopt any one of these languages. Instead FIXatdl® presents its own
with the understanding that a vendor may extend or transform it to be aligned with their architecture and internal
data structures.)

Most Controls are associated with a particular Parameter. This is done via the Control attribute, parameterRef.
However some controls may not have an associated Parameter. These controls are typically defined in order to affect
the state of other controls via the use of a StateRule element.

The following listing describes four parameters and the layout of their four associated controls. If we examine the
code we’ll notice that the controls are enclosed in two StrategyPanel elements, one entitled “Time Parameters”
and the other entitled “Advanced”. These two panels are nested horizontally into the top-level StrategyPanel
element of the StrategyLayout element.

<Parameter name="StartTime" xsi:type="UTCTimestamp_t" fixTag="28005" use="required"/>
<Parameter name="EndTime" xsi:type="UTCTimestamp_t" fixTag="28006" use="required"/>
<Parameter name="ParticipationRate" xsi:type="Float_t" fixTag="28007" use="optional"/>
<Parameter name="Aggression" xsi:type="Char_t" fixTag="28001" use="required">
 <EnumPair enumID="e_low" wireValue="L"/>
 <EnumPair enumID="e_med" wireValue="M"/>
 <EnumPair enumID="e_high" wireValue="H"/>
</Parameter>
<StrategyLayout>
 <StrategyPanel orientation="HORIZONTAL">
 <StrategyPanel title="Time Parameters" orientation="VERTICAL">
 <Control ID="c_ST" xsi:type="Clock_t" label="Start Time" parameterRef="StartTime"/>
 <Control ID="c_ET" xsi:type="Clock_t" label="End Time" parameterRef="EndTime"/>
 </StrategyPanel>
 <StrategyPanel title="Advanced" orientation="VERTICAL">
 <Control ID="c_PR" xsi:type="SingleSpinner" label="Partic. Rate"
 parameterRef="ParticipationRate"/>
 <Control ID="c_A" xsi:type="DropDownList_t" label="Aggression"
 parameterRef="Aggression">
 <ListItem enumID="e_low" uiRep="Low"/>
 <ListItem enumID="e_med" uiRep="Medium"/>
 <ListItem enumID="e_high" uiRep="High"/>
 </Control>
 </StrategyPanel>
 </StrategyPanel>
</StrategyLayout>

Notice how the Parameter/@name attributes match with the Control/@parameterRef attributes. This creates the
binding between parameters and controls. Also note how the EnumPair/@EnumID attributes match with the

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 13 of 70

ListItem/@EnumID attributes. This creates the binding between the enumeration values of the parameter and the
items of a drop-down list.

If an application were to render this information on an order ticket it would have to decide which GUI controls to
instantiate and find a way to insert them into panels and lay the panels out according to the instructions of the XML.
Different platforms will have different controls and panels available for this purpose and the application built on these
platforms will have different appearances. So, a rendering of the controls described in the previous listing may look
similar to the following image:

Figure 5 — GUI Layout Example

3.4.1 Enable/Disable Clock Controls

Clock controls are the GUI component rendered in an OMS/EMS that allows a user to enter a time of day value. For
example, the most common parameters to an algorithmic order, “Start Time” and “End Time” will be rendered via a
clock control. A common use case involving a clock control is one where the user enters an order without specifying a
time in the control, thus keeping a value from going out over the wire in the order message. The receiving broker in
this case will apply a default value or default behavior based on the non-presence of this field. To do this, two helper
controls are used. They are either check boxes or radio buttons and affect the value of the Clock control by use of a
StateRule element.

For example:

<lay:StrategyPanel orientation="VERTICAL" title="Start Time">
 <lay:StrategyPanel orientation="HORIZONTAL">
 <lay:Control ID="c_NoStartTime" xsi:type="lay:RadioButton_t"
 label="Now" initValue="true" radioGroup="StartTimeRB">
 </lay:Control>
 </lay:StrategyPanel>
 <lay:StrategyPanel orientation="HORIZONTAL">
 <lay:Control ID="c_EnableStartTime" xsi:type="lay:RadioButton_t" label=""
 radioGroup="StartTimeRB">
 </lay:Control>
 <lay:Control ID="StartTimeClock" xsi:type="lay:Clock_t" label=""
 parameterRef="StartTime">
 <flow:StateRule enabled="false" value="{NULL}">
 <val:Edit field="c_EnableStartTime" operator="EQ" value="false"/>
 </flow:StateRule>
 </lay:Control>
 </lay:StrategyPanel>
</lay:StrategyPanel>

Here is how it might be rendered:

Figure 6 — Clock Control Example 1

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 14 of 70

The value of the Clock control depends on which radio button is selected. If the first is selected, then the state rule
defined within the Clock control will set the value of the Clock to null. If the Control is null, then the Parameter bound
to the Control is null, and the parameter / FIX Tag is not populated when the order message goes out on the wire. If
the second button is selected, then the value of the parameter that goes out on the wire is taken directly from the
value the user entered.

The same can be done using a dropdown (combo box) with two items instead:

<lay:StrategyPanel orientation="VERTICAL" title="Start Time">
 <lay:StrategyPanel orientation="HORIZONTAL">
 <lay:Control ID="c_StartTimeOption" xsi:type="lay:DropDownList_t" label="">
 <lay:ListItem enumID="e_now" uiRep="Now"/>
 <lay:ListItem enumID="e_custom" uiRep="Custom"/>
 </lay:Control>
 </lay:StrategyPanel>
 <lay:StrategyPanel orientation="HORIZONTAL">
 <lay:Control ID="c_StartTimeClock" xsi:type="lay:Clock_t" label=""
 parameterRef="StartTime">
 <flow:StateRule enabled="false" value="{NULL}">
 <val:Edit field="c_StartTimeOption" operator="EQ" value="e_now"/>
 </flow:StateRule>
 </lay:Control>
 </lay:StrategyPanel>
</lay:StrategyPanel>

Rendering the following:

Figure 7 — Clock Control Example 2

Here the “Custom” item has been selected from the dropdown list. If the user had selected “Now” then the time
below the dropdown would be greyed out.

The following set of Clock control attributes allows this behavior to be supported without the need of helper controls
or state rules. To do so, an OMS would need to implement a compound GUI control (a GUI control with at least two
underlying controls: a datetime picker and a check box / radio button). To achieve this goal, the attributes
“enablingControlType”, “disablingControlType”, and “disablingControlText” are available for the Clock control.

Using these attributes, the previous FIXatdl® sample could be written as follows:

<lay:StrategyPanel orientation="VERTICAL" title="Start Time">
 <lay:Control ID="StartTimeClock" xsi:type="lay:Clock_t" label=""
 disablingControlType="RadioButton"
 disablingControlLabel="Now"
 enablingControlType="RadionButton"
 parameterRef="StartTime">
 </lay:Control>
</lay:StrategyPanel>

The rendering would remain as before:

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 15 of 70

Figure 8 — Clock Control Example 1

If an explicit GUI control used to disable user input is not desired, then the “disablingControlType” attribute can be
omitted:

<lay:StrategyPanel orientation="VERTICAL" title="Start Time">
 <lay:Control ID="StartTimeClock" xsi:type="lay:Clock_t" label=""
 enablingControlType="RadionButton"
 parameterRef="StartTime">
 </lay:Control>
</lay:StrategyPanel>

An OMS may choose to render this clock control as follows:

Figure 9 — Clock Control Example 3

As with previous examples, if the radio button is selected then the value that goes on the wire is derived from what
the user had entered. If the radio button is not selected, then no value goes on the wire.

3.4.2 Duration as an Alternative to Expiration Time

While it is the best practice to receive the effective time of an order through use of FIX fields EffectiveTime(168) and
ExpireTime(126), some algorithm providers employ a user-defined tag to receive a duration rather than an expiration
time. The following example shows the layout of GUI controls that will collect a start time and end time:

<StrategyPanel orientation="HORIZONTAL">
 <StrategyPanel orientation="VERTICAL" title="Start Time">
 <StrategyPanel orientation="HORIZONTAL">
 <Control ID="c_NoStartTime" xsi:type="RadioButton_t"
 label="Now" initValue="true" radioGroup="StartTimeRB">
 </Control>
 </StrategyPanel>
 <StrategyPanel orientation="HORIZONTAL">
 <Control ID="c_EnableStartTime" xsi:type="RadioButton_t" label=""
 radioGroup="StartTinmeRB">
 </Control>
 <Control ID="StartTimeClock" xsi:type="Clock_t" label=""
 parameterRef="StartTime">
 <flow:StateRule enabled="false" value="{NULL}">
 <val:Edit field="c_EnableStartTime" operator="EQ" value="false"/>
 </flow:StateRule>
 </Control>
 </StrategyPanel>
 </StrategyPanel>
 <StrategyPanel orientation="VERTICAL" title="End Time">
 <StrategyPanel orientation="HORIZONTAL">
 <Control ID="c_NoEndTime" xsi:type="RadioButton_t"

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 16 of 70

 label="Mkt Close" initValue="true" radioGroup="EndTimeRB">
 </Control>
 </StrategyPanel>
 <StrategyPanel orientation="HORIZONTAL">
 <Control ID="c_EnableEndTime" xsi:type="RadioButton_t" label=""
 radioGroup="EndTimeRB">
 </Control>
 <Control ID="EndTimeClock" xsi:type="Clock_t" label=""
 parameterRef="EndTime">
 <flow:StateRule enabled="false" value="{NULL}">
 <val:Edit field="c_EnableEndTime" operator="EQ" value="false"/>
 </flow:StateRule>
 </Control>
 </StrategyPanel>
 </StrategyPanel>
</StrategyPanel>

Rendering:

Figure 10 — Duration Example 1

A Duration control represents a time span rather than a point in time. Replacing the EndTime control in the previous
example with a Duration control results in:

<StrategyPanel orientation="HORIZONTAL">
 <StrategyPanel orientation="VERTICAL" title="Start Time">
 <StrategyPanel orientation="HORIZONTAL">
 <Control ID="c_NoStartTime" xsi:type="RadioButton_t"
 label="Now" initValue="true" radioGroup="StartTimeRB">
 </Control>
 </StrategyPanel>
 <StrategyPanel orientation="HORIZONTAL">
 <Control ID="c_EnableStartTime" xsi:type="RadioButton_t" label=""
 radioGroup="StartTinmeRB">
 </Control>
 <Control ID="StartTimeClock" xsi:type="Clock_t" label=""
 parameterRef="StartTime">
 <flow:StateRule enabled="false" value="{NULL}">
 <val:Edit field="c_EnableStartTime" operator="EQ" value="false"/>
 </flow:StateRule>
 </Control>
 </StrategyPanel>
 </StrategyPanel>
 <StrategyPanel orientation="VERTICAL" title="Duration">
 <StrategyPanel orientation="HORIZONTAL">
 <Control ID="c_NoDuration" xsi:type="RadioButton_t"
 label="Until the close" initValue="true" radioGroup="DurationRB">
 </Control>
 </StrategyPanel>
 <StrategyPanel orientation="HORIZONTAL">
 <Control ID="c_EnableDuration" xsi:type="RadioButton_t" label=""
 radioGroup="DurationRB">
 </Control>
 <Control ID="c_Duration" xsi:type="Duration_t" label="" parameterRef="Duration">

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 17 of 70

 <flow:StateRule enabled="false" value="{NULL}">
 <val:Edit field="c_EnableDuration" operator="EQ" value="false"/>
 </flow:StateRule>
 </Control>
 </StrategyPanel>
 </StrategyPanel>
</StrategyPanel>

Rendering:

Figure 11 — Duration Example 2

The parameter “Duration” can be defined as a UTCTimeOnly field, as in the following statement:

<parameter name="Duration" xsi:type="UTCTimeOnly_t" fixTag="29003" uiRep="Duration"
use="optional"/>

It will be the responsibility of the OMS to correctly populate the Duration parameter on the wire (an integer or a time-
related type) from the value returned by the Duration GUI control.

3.4.3 Grid Layout for Strategy Panels

To better support the ability of FIXatdl® to describe how GUI controls should be oriented when presented to an OMS
user, a feature is available that allows controls to be arranged in grid. Specifically, the value of “GRID” is available for
the type “PanelOrientation_t”. The XML schema definition is now:

<xs:simpleType name="PanelOrientation_t">
 <xs:restriction base="xs:string">
 <xs:enumeration value="HORIZONTAL"/>
 <xs:enumeration value="VERTICAL"/>
 <xs:enumeration value="GRID"/>
 </xs:restriction>
</xs:simpleType>

As before, StrategyPanel elements define their orientation by setting their orientation attribute to one of these
values which can now include “GRID”. For example:

<StrategyPanel orientation="GRID">

This allows for all the elements contained in the panel, whether they are controls or other panels, to be arranged by
rows and columns. Any item contained within a grid may declare a row, column, row span or column span value to
explicitly guide its placement in the grid. However, explicitly declaring the placement of an item in the grid is optional.
If row and column values are not provided, then the items are expected to be arranged in row-major or column-major
order. The attribute “fillOrder” indicates which to use. If row or column span values are not provided, then the item is
assumed to take up one row or column.

The attributes “row”, “col”, rowSpan“, and”colSpan" may be specified in any Control or StrategyPanel elements
which are child elements of a grid-oriented StrategyPanel element. The attributes “numRows”, “numCols”, and
“fillOrder” may be specified in any grid-oriented StrategyPanel element.

In the following three code samples a panel is created with two rows and two columns. The rendering from each
sample is identical. In the first, the controls, which are contained within the panel, each explicitly declare a row and
column number.

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 18 of 70

<lay:StrategyPanel orientation="GRID" numRows="2" numCols="2">
 <lay:Control ID="control1" label="control1" row="0" col="0"/>
 <lay:Control ID="control2" label="control2" row="1" col="0"/>
 <lay:Control ID="control3" label="control3" row="0" col="1"/>
 <lay:Control ID="control4" label="control4" row="1" col="1"/>
</lay:StrategyPanel>

Next, the StrategyPanel attributes numRows and numCols are left out. One can still determine how to render the
controls based on the attributes “row” and “col” of each Control element.

<lay:StrategyPanel orientation="GRID">
 <lay:Control ID="control1" label="control1" row="0" col="0"/>
 <lay:Control ID="control2" label="control2" row="1" col="0"/>
 <lay:Control ID="control3" label="control3" row="0" col="1"/>
 <lay:Control ID="control4" label="control4" row="1" col="1"/>
</lay:StrategyPanel>

Finally, an implicit declaration of each item’s placement is supported by not specifying their row and column
attributes. Given the number of rows and columns and the fill order, the arrangement of the controls is easily
determined.

<lay:StrategyPanel orientation="GRID" numRows="2" numCols="2" fillOrder="COL-MAJOR">
 <lay:Control ID="control1" label="control1"/>
 <lay:Control ID="control2" label="control2"/>
 <lay:Control ID="control3" label="control3"/>
 <lay:Control ID="control4" label="control4"/>
</lay:StrategyPanel>

Each of the previous three samples will result in the same arrangement of the GUI controls:

Figure 12 — GUI Controls Example 1

Note that when switching from column-major to row-major order, as in

<lay:StrategyPanel orientation="GRID" numRows="2" numCols="2" fillOrder="ROW-MAJOR">

the controls are rendered as follows:

Figure 13 — GUI Controls Example 2

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 19 of 70

When it makes sense for a control (or panel) to span multiple columns or rows, the “colSpan” and “rowSpan”
attributes can be used. They provide the same functionality as “merge cell” in spreadsheet programs like Excel. The
value of either attribute must be a positive integer and specifies the number of columns or rows that the control (or
panel) fills. For example,

<lay:StrategyPanel orientation="GRID" numRows="2" numCols="2" fillOrder="ROW-MAJOR">
 <lay:Control ID="control1" label="control1"/>
 <lay:Control ID="control2" label="control2"/>
 <lay:Control ID="control3" label="control3" colSpan="2"/>
</lay:StrategyPanel>

will render the following:

Figure 14 — GUI Controls Example 3

3.4.3.1 Error Conditions

Since the attributes “row”, “col”, “numRows”, “numCols”, “rowSpan”, and “colSpan” are optional, their use may be
prone to error. One must be rather careful not to define their values in such a way as to make their arrangement
ambiguous or to be in conflict. With that in mind, guidance is provided for the following error conditions:

Error Scenario Resolution

Row/column
conflicts.

Two or more items in a grid specify the same
row and column values.

Ignore all “row”/“col” attributes of all grid
items and render as if they had not been
specified.

Row or column
values are out-of-
range.

The “numRows” and “numCols” attributes of a
StrategyPanel element are defined as N and
M, but a child control’s “row” attribute b is >=
N or its “col” attribute is >= M.

Override the “numRows” or “numCols”
attribute of the StrategyPanel element with
a value large enough to accommodate the
child control’s “row” or “col” attribute.

Mismatch in
parent-child
orientation.

Grid attributes are defined on a control whose
parent is not a grid.

The grid attributes of the control are ignored.

This list is not definitive and is expected to grow as issues are raised and identified by those implementing FIXatdl®.

3.5 Flow Control Rules

Interdependencies among standard FIX tags affecting their applicability are quite common. For example, Price(44) is
not applicable when OrdType(40) is set to “Market”. The same can be said for algorithmic order types and their
parameters. Many algorithmic order types will have parameters whose applicability is dependent on the value of one
or more other parameters. These rules are often listed in algorithmic order specifications in the comments column of
tables that describe the parameters of the algorithm.

In order to standardize the way these rules are described, a sub-schema is provided, which contains elements and
attributes used to define rules that can be applied to the visual state of GUI Controls. This capability is a means to
direct the user’s workflow and this is why it has been called “flow control”. When creating flow-control rules the
expectations are that they are evaluated every time a Control’s value has changed. Based on the outcome of the

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 20 of 70

evaluations, certain GUI controls may become grayed-out or hidden as the user enters values into text fields or selects
items from drop-down lists.

Flow-control rules can be described via the StateRule element. A StateRule element will consist of a Boolean
expression and an action to take when the Boolean expression is true. There are three actions that are supported: (1)
change the “enabled” state of a control to either “true” or “false”; (2) change the “visible” state of a control to either
“true” or “false”; and (3) change the current value of the control to a supplied value. (Supplied values may be a
constant string value, an enumID, or the special token {NULL}.)

As with validation rules, flow-control rules employ the Edit element to describe the condition (or Boolean
expression). However, when an Edit element is used in a Flow-control rule, it will not make comparisons of
parameter values; rather it will compare the values returned by the controls. For example, the attributes
Edit/@field and Edit/@field2 will refer to either control values or constant values.

Another difference between validation rules and flow-control rules is that the action of a flow-control rule is
performed when the condition it describes is true. This differs from validation rules, where the action of “raising an
error” occurs when the condition is false.

To illustrate the description of a Flow-control rule consider the following code snippet. (Note how the Control/@ID
attribute value “c_AlphaMode” matches the Edit/@field attribute value “c_AlphaMode” and how the “enumID”
attribute value “e_Custom” matches the “value” attribute value “e_Custom”):

<Parameter name="AlphaMode" xsi:type="Int_t" fixTag="28300" use="required">
 <EnumPair enumID="e_Annual" wireValue="1"/>
 <EnumPair enumID="e_Daily" wireValue="2"/>
 <EnumPair enumID="e_Custom" wireValue="3"/>
</Parameter>
<Parameter name="CustomValue" xsi:type="Float_t" fixTag="28301" use="optional"/>
<StrategyLayout>
 <StrategyPanel orientation="HORIZONTAL">
 <Control ID="c_AlphaMode" xsi:type="DropDownList" label="Alpha Benchmark"
 parameterRef="AlphaMode">
 <ListItem enumID="e_Annual" uiRep="Annual"/>
 <ListItem enumID="e_Daily" uiRep="Daily"/>
 <ListItem enumID="e_Custom" uiRep="Custom"/>
 </Control>
 <Control ID="c_CustomValue" xsi:type="SingleSpinner_t" label="Custom Alpha"
 parameterRef="CustomValue">
 <StateRule enabled="true">
 <Edit field="c_AlphaMode" operator="EQ" value="e_Custom"/>
 </StateRule>
 <StateRule value="{NULL}">
 <Edit field="c_AlphaMode" operator="NE" value="e_Custom"/>
 </StateRule>
 </Control>
 </StrategyPanel>
</StrategyLayout>

Two parameters are defined in this listing, “AlphaMode” and “CustomValue”. Also two controls corresponding to the
parameters are defined. A rule has been supplied to the control identified by “c_CustomValue” governing its visual
behavior. The rule should be interpreted as: “The control c_CustomValue is enabled only when the value of control
c_AlphaMode has been set to”Custom“. So a user who selects”Annual" or “Daily” would not able to enter a custom
Alpha value. Only when “Custom” is selected from the dropdown list would the custom Alpha control be able to
accept values entered by the user.

While StateRules are explicit in defining the changes to a control when the condition, described by its Edit element,
makes the transition from being false to being true, it is not clear what changes to make when the condition becomes
false again (or is initially false). So, to clarify the behavior of the controls, the following conventions are applied:

1. A StateRule element that changes the “enabled” property of a control to X when its condition becomes
true, will implicitly cause the “enabled” property of the control to change to NOT(X) when its condition
becomes false, where X is Boolean. (The “enabled” property simply controls whether or not the value

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 21 of 70

within the control can be changed (is read-only) and is not a determining factor in whether or not the
control’s value is to be included in the message transmitted over the wire.)

2. A StateRule element that changes the “visible” property of a control to X when its condition becomes
true, will implicitly cause the “visible” property of the control to change to NOT(X) when its condition
becomes false, where X is Boolean.

3. A StateRule element that changes the value of a control when its condition becomes true will cause no
action to take place when its condition becomes false. Provided the vale expressed in the StateRule
element is not the special token “{NULL}”.

4. A StateRule element that changes the value of a control to “{NULL}” when its condition becomes true
will cause the control’s value to revert back to its previous non-{NULL} value or its initial value.

Note that due to point 4 above, when a StateRule element condition becomes false it may cause the control to
become un-initialized. When this occurs the control will have no value. Should a NewOrderSingle(35=D),
OrderCancelRequest(35=F) or OrderCancelReplaceRequest(35=G) message be generated while the control is in this
condition, the associated parameter will not be included in that message.

Also note that the state of a control’s enabled property or visible property does not influence whether the control’s
associated parameter is sent on the wire or not. This behavior is governed entirely by the control’s value. To clarify
this, one must adhere to another convention:

5. To the extent that a control’s value determines the “wire-value” of a particular parameter, if the control is
un-initialized or has been set to the value of “{NULL}” then the associated parameter will not have a “wire-
value” and will not have its tag-value pair included in a NewOrderSingle(35=D), OrderCancelRequest(35=F) or
OrderCancelReplaceRequest(35=G) message.

In other words, if a user enters a value into a control and subsequently the control becomes disabled then the value
that was entered would cause a tag to be populated in the generated FIX message and the value would go out over
the wire. This is why, in the previous listing, a second StateRule element was required:

<StateRule value="{NULL}">
 <Edit field="c_AlphaMode" operator="NE" value="e_Custom"/>
</StateRule>

If this rule had not been provided, a “CustomValue” parameter (tag 28301) would be transmitted on the wire if the
user had entered a value into the spinner and then selected “Daily” or “Annual” from the drop-down list.

3.6 Parameter-to-Control Bindings

In order for an E/OMS to generate an order message it must iterate through all the parameters, find the associated
controls, retrieve the control values and determine appropriate values with which to populate the custom FIX tags of
the order message. In order for this to be accomplished FIXatdl® provides a means for relating controls to parameters,
mainly, the parameterRef attribute of the Control element. This attribute is set to the value of a Parameter
element’s name attribute, thus providing a binding between the two.

Bindings of controls to parameters may be either one-to-one, where one control is bound to one parameter, or many-
to-one, where multiple controls are bound to one parameter. (The only cases of many-to-one bindings involve groups
of radio buttons. All other bindings are one-to-one.)

When a binding of a control to a parameter is declared it must be possible for the control’s value to be converted to a
legal wire-value of the control. For example, it makes little sense for a checkbox control to be bound to a floating
point parameter. Rather, a checkbox is more logically fit to be bound to a Boolean parameter.

Not all parameters need an associated control. Some parameters are intended to act as constants and have no GUI
control representation. The FIX tags of the parameters are expected to be populated with the same value in every
order message regardless of the values of other parameters. When this is the case, an attribute of the Parameter
element, constValue, is used to indicate that the parameter is a constant and provides the value, as in the following
listing.

<Parameter name="ExecService" xsi:type="Char_t" fixTag="29050" constValue="A"/>

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 22 of 70

Based on this description of “ExecService” the order recipient would expect to receive a FIX message containing the
substring “29050=A”.

Conversely, it is also the case that not all control need to be bound to a parameter. Controls with no declared
parameterRef attribute are considered helper controls. They are used to manage the state of other controls via the
use of flow-control rules. For example, the following listing describes two controls – a helper control and a control
bound to some integer parameter named “CrossQty”.

<Control ID="EnableCross" xsi:type="CheckBox_t" label="Enable Cross" initValue="false">
<Control ID="CrossQty" xsi:type="SingleSpinner_t" label="Cross Qty" parameterRef="CrossQty">
 <StateRule enable="true">
 <Edit field="EnableCross" operator="EQ" value="true"/>
 </StateRule>
</Control>

For a strategy rendered from this description, the user would not be able to enter a value into the “CrossQty” spinner
control unless the “EnableCross” checkbox is checked.

3.7 Transport of Strategy Parameters

The FIX Protocol allows algorithmic order parameters to be transported between parties either by use of the
StrategyParametersGrp repeating group or by use of user-defined tags mutually agreed upon by the order originator
and order recipient. FIXatdl® provides a means for the order recipient to inform the order originator which of these
methods to use.

An algorithmic order provider indicates that it can receive parameters through the StrategyParametersGrp
component (tags 957-960) by setting the attribute of the Strategies element, tag957Support, to true. The
recipient can also indicate that it is able to receive parameters via user-defined tags by proving values for the fixTag
attributes of each Parameter element. An algorithmic order provider may support both transport methods.

To illustrate, consider the following listing:

<Strategies strategyIdentifierTag="27000" versionIdentifierTag="27001" tag957Support="true">
 <Strategy name="POV" uiRep="POV" wireValue="v" version="1" fixMsgType="D">
 <Parameter name="PctVol" xsi:type="Percentage_t" fixTag="27002" use="required"/>
 <Parameter name="FC" xsi:type="Boolean_t" fixTag="27003" use="required"/>
 <StrategyLayout>
 <StrategyPanel>
 <Control ID="c_PctVol" xsi:type="SingleSpinner_t" label="Pct of Volume"
 parameterRef="PctVol"/>
 <Control ID="c_FC" xsi:type="CheckBox_t" label="Force Completion"
 parameterRef="FC"/>
 </StrategyPanel>
 </StrategyLayout>
 </Strategy>
</Strategies>

This document instance describes an algorithm with two parameters, PctVol and ForceCompletion. The algorithm
provider has also indicated that it supports receipt of these parameters via StrategyParametersGrp and via the UDFs
27002 and 27003. So an E/OMS would be free to choose between the two methods when it transmits the parameters.
If this were to be rendered by an E/OMS and a user was to enter a “PctVol” value of 0.15 and check the Force
Completion checkbox, then the order generated may contain a substring similar to:

... 35=D|11=1234|55=AXP|...

|27000=v|27001=1|957=2|958=PctVol|959=11|960=0.15|958=FC|959=13|960=Y

In this case the E/OMS has decided to use the StrategyParametersGrp repeating group. If the tag957Support
attribute were set to false then the E/OMS would be forced to use the UDFs, 27002 and 27003, as in:

... 35=D|11=1234|55=AXP|... |27000=v|27001=1|27002=0.15|27003=Y

The general rule for determining which method to use is as follows.

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 23 of 70

tag957Support fixTag attributes provided Method for transmitting parameters

true no StrategyParametersGrp

true yes StrategyParametersGrp or UDFs (but never both)

false yes UDFs

false no (Not allowed – at least one method must be specified)

3.8 Support for Basket, List and Multileg Order Types

FIXatdl® provides robust support for multileg order types and clarify how their interfaces are described. In doing so,
the following concepts were considered.

3.8.1 Order Delivery

Any algorithm provider must inform its clients, or its clients’ OMSs, which method(s) to use so the order can be
delivered as expected. There are three acceptable methods used to deliver multileg orders to an execution venue:

• Multiple NewOrderSingle(35=D) messages – one for each leg, where an additional identifier is used to
associate the individual legs with one another.

• A single NewOrderMultiLeg(35=AB) message – information about individual legs are placed into the
repeating group LegOrdGrp.

• A single NewOrderList(35=E) message – information about individual legs are placed into the repeating
group ListOrdGrp. Note that it may also be possible to partition the legs into several NewOrderList(35=E)
messages provided they share the same values for ListID(66) and TotNoOrders(68).

The most common method in use today is to issue multiple NewOrderSingle(35=D) messages; one for each leg or each
order in a basket.

3.8.2 Leg Count

The description of the order interface must include a number representing the required number of legs for the
strategy. An OMS should use this information to render a fixed number of GUI controls where values for the leg
parameters can be entered. For example, a pairs strategy would require two legs; with this information, an OMS
should render two sets of GUI controls which are associated with the fields of the legs. A value of “unbounded” must
be allowed in order to support the delivery of a variable number of legs such as in the case of a basket/portfolio
strategy. The attributes “minLegs” and “maxLegs” are provided for this purpose.

The following examples show the description of a strategy which requires exactly two legs, followed by a strategy
which requires one or more legs.

<Strategy name="two-legged-order"
 ...

 minLegs="2" maxLegs="2">
 ...

</Strategy>

<Strategy name="one-or-more-legged-order"
 ...

 minLegs="1" maxLegs="unbounded">
 ...

</Strategy>

3.8.3 Linking and Sequencing of Single Orders

When accepting multileg orders via a group of NewOrderSingle(35=D) messages, the orders need to be linked.
FIXatdl® supports the definition of a FIX tag number in which the OMS will place a unique ID (or “Global” Order ID) in
each of the messages, the definition of a tag number in which the OMS will place a leg sequence number, and the
definition of a tag number in which the OMS will place the total number of legs of the order. The attributes
“commonIDTag”, “legSequenceTag”, and “totalLegsTag” are provided for this purpose.

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 24 of 70

For example, the following strategy requires that linking and sequencing data is to be populated in the user-defined
tags 27066, 27067 and 27068.

<Strategy
 ...

 commonIDTag="27066"
 legSequenceTag="27067"
 totalLegsTag="27068">
 ...

</Strategy>

Note that the semantics of these attributes are analogous to ListID(66), ListSeqNum(67) and TotNoOrders(68) in a
NewOrderList(35=E) message. However, use of these values should be avoided as the associated fields are not
members of the NewOrderSingle(35) message. Instead, broker/dealers should use UDFs.

3.8.4 Parameter Scope

Algorithmic order parameters can either apply to the entire order or to the legs of the order. In the description of a
parameter, the scope must be clear; at the order level or at the leg level. To represent this, the leg parameters are
wrapped in a the Leg element.

For example:

<Parameter name="p_OrdParamA" xsi:type="Int_t" fixTag="25000"/>
<Parameter name="p_OrdParamB" xsi:type="Int_t" fixTag="25001"/>
<Leg>
 <Parameter name="p_LegParamA" xsi:type="Int_t" fixTag="26001"/>
 <Parameter name="p_LegParamB" xsi:type="Int_t" fixTag="26002"/>
</Leg>

Here there are two strategy parameters; both of which will be included in each leg of the order.

3.8.5 Cancel/Modify of Legs

When the delivery option being used is the NewOrderSingle(35=D) message then the OMS must know how to handle
cancellation and modification of the order. The description of the strategy must indicate whether an individual leg can
be cancelled or modified and, if so, whether it is necessary to re-send all the legs that were not modified. The
attribute Strategy/@legsAreSeverable is provided for this purpose.

3.8.6 Validation of Leg Parameter Values

The validation rules allow references to parameter values in the evaluation of its Boolean expression. For multileg
orders, the values of leg parameters need to be supported in the validation rules. This is provided with an additional
attribute Edit/@legNo to indicate a leg number.

The following example shows a rule for validating a Pairs trade, confirming, without knowing the sequence of the legs,
that one leg is a Buy and the other is a Sell.

<val:StrategyEdit errorMessage="One leg must be a BUY, the other a SELL">
 <val:Edit logicOperator="OR">
 <val:Edit logicOperator="AND">
 <val:Edit field="FIX_Side" legNo="1" operator="EQ" field2="1"/>
 <val:Edit logicOperator="OR">
 <val:Edit field="FIX_Side" legNo="2" operator="EQ" field2="2"/>
 <val:Edit field="FIX_Side" legNo="2" operator="EQ" field2="5"/>
 </val:Edit>
 </val:Edit>
 <val:Edit logicOperator="AND">
 <val:Edit field="FIX_Side" legNo="2" operator="EQ" field2="1"/>
 <val:Edit logicOperator="OR">
 <val:Edit field="FIX_Side" legNo="1" operator="EQ" field2="2"/>
 <val:Edit field="FIX_Side" legNo="1" operator="EQ" field2="5"/>
 </val:Edit>
 </val:Edit>

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 25 of 70

 </val:Edit>
</val:StrategyEdit>

3.8.7 Display/Layout of Leg Parameters

For single-leg order definitions there are certain standard fields that should not be included in the Parameter or
Controls declarations. These include: Symbol(55), Side(54), OrderQty(38), OrdType(40), Price(44) and StopPrice(99).
OMSs tend to handle these separately from strategy parameters and display them regardless of whether they are
declared in the FIXatdl® code, or rather, if they are declared in FIXatdl®, they are somehow ignored, or some special
processing is involved.

Extending this model to multileg orders, there are certain standard fields that should not be included in the leg
definitions, yet it can be assumed that they will be presented to the user. If an order requires N legs, then these
standard fields will be presented in all N legs. So, in effect, if a single order entry screen is segregated into a standard
section and a custom parameter section, then a multileg order entry screen is segregated into N+1 sections: a global
custom parameter section and N leg sections where each leg section contains a standard section and a custom
parameter section.

FIXatdl® supports a panel to hold all leg-level controls. It needs to be declared just once with the expectation that it
will be repeated as many times as necessary according to the value of the attribute “requiredNumberOfLegs”. The
LegPanel element is provided for this purpose.

Example:

<StrategyLayout>
 <StrategyPanel collapsible="false" orientation="VERTICAL">
 <Control ID="c_OrdParam1" label="Ord Param A" parameterRef="p_OrdParamA"
 xsi:type="SingleSpinner_t"/>
 <Control ID="c_OrdParam2" label="Ord Param B" parameterRef="p_OrdParamB"
 xsi:type="SingleSpinner_t"/>
 </StrategyPanel>
 <LegPanel collapsible="false" orientation="VERTICAL">
 <Control ID="c_LegParamA" label="Leg Param A" parameterRef="p_LegParamA"
 xsi:type="SingleSpinner_t"/>
 <Control ID="c_LegParamB" label="Leg Param B" parameterRef="p_LegParamB"
 xsi:type="SingleSpinner_t"/>
 </LegPanel>
</StrategyLayout>

3.8.8 GUI State Rule for Leg Panel Controls

GUI Controls contained within a leg panel can have their states and values change just like Controls found in a regular
strategy panel. However, controls that are referenced by a state rule of another control are assumed to be in the
same scope as the referring control. For example, in the following listing, the second GUI control is disabled and given
a null value if the first control (checkbox) is checked.

<lay:LegPanel collapsible="false" orientation="VERTICAL">
 <lay:Control ID="c_LegParamA" label="Leg Param A" parameterRef="p_LegParamA"
 xsi:type="lay:Checkbox_t"/>
 <lay:Control ID="c_LegParamB" label="Leg Param B" parameterRef="p_LegParamB"
 xsi:type="lay:SingleSpinner_t">
 <StateRule enabled="false" value="{NULL}">
 <Edit field="c_LegParamA" operator="EQ" value="True"/>
 </StateRule>
 </lay:Control>
</lay:LegPanel>

If there are several legs, then this state rule will be enforced in each leg panel. The behavior of the state rules in each
leg panel is independent of the others.

3.8.9 Vendor Configurations

Different GUI layouts can be defined based on set types of vendor configurations or service levels. For an
implementation of this feature, an XML element defined at the Strategy level is used. It allows filtering of strategies to

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 26 of 70

be performed much in the same way as the Regions element does. (As of now the only configuration level identified is
whether an OMS allows leg parameters. Some do not.)

The following two examples show the description of a two-legged order strategy. In the first, it is expected that the
vendor’s system supports leg parameters, i.e. leg parameters may take different values from leg to leg. In the second,
it is expected that the vendor’s system does not support leg parameters having different values from leg to leg;
effectively disallowing their use. Populating the message with the necessary information requires that all leg
parameters are repeated with the same value in each leg.

<Strategy
 ...

 minLegs="2"
 maxLegs="2"
 ...

 >
 <VendorConfig legParameters="true"/>
 <DeliveryMethods>
 <FixMsg msgType="NewOrderSingle"/>
 <FixMsg msgType="NewOrderMultiLeg"/>
 </DeliveryMethods>
 <Parameter name="p_OrdParamA" xsi:type="Int_t" fixTag="25000"/>
 <Parameter name="p_OrdParamB" xsi:type="Int_t" fixTag="25001"/>
 <Leg>
 <Parameter name="p_LegParamA" xsi:type="Int_t" fixTag="26001"/>
 <Parameter name="p_LegParamB" xsi:type="Int_t" fixTag="26002"/>
 </Leg>
 <lay:StrategyLayout>
 <lay:StrategyPanel collapsible="false" orientation="VERTICAL">
 <lay:Control ID="c_OrdParam1" label="Ord Param A" parameterRef="p_OrdParamA"
 xsi:type="lay:SingleSpinner_t"/>
 <lay:Control ID="c_OrdParam2" label="Ord Param B" parameterRef="p_OrdParamB"
 xsi:type="lay:SingleSpinner_t"/>
 </lay:StrategyPanel>
 <lay:LegPanel collapsible="false" orientation="VERTICAL">
 <lay:Control ID="c_LegParamA" label="Leg Param A" parameterRef="p_LegParamA"
 xsi:type="lay:SingleSpinner_t"/>
 <lay:Control ID="c_LegParamB" label="Leg Param B" parameterRef="p_LegParamB"
 xsi:type="lay:SingleSpinner_t"/>
 </lay:LegPanel>
 </lay:StrategyLayout>
</Strategy>

<Strategy
 ...

 minLegs="2"
 maxLegs="2"
 ...

 >
 <VendorConfig legParameters="false"/>
 <DeliveryMethods>
 <FixMsg msgType="NewOrderSingle"/>
 </DeliveryMethods>
 <Parameter name="p_Ord_ParamA" xsi:type="Int_t" fixTag="25000"/>
 <Parameter name="p_Ord_ParamB" xsi:type="Int_t" fixTag="25001"/>
 <Leg>
 <Parameter name="p_Buy_Leg_ParamA" xsi:type="Int_t" fixTag="26001"/>
 <Parameter name="p_Buy_Leg_ParamB" xsi:type="Int_t" fixTag="26002"/>
 <Parameter name="p_Sell_Leg_ParamA" xsi:type="Int_t" fixTag="26003"/>
 <Parameter name="p_Sell_Leg_ParamB" xsi:type="Int_t" fixTag="26004"/>
 </Leg>
 <lay:StrategyLayout>
 <lay:StrategyPanel collapsible="false" orientation="VERTICAL">
 <lay:Control ID="c_OrdParamA" label="Ord Param A"
 parameterRef="p_OrdParamA"
 xsi:type="lay:SingleSpinner_t"/>
 <lay:Control ID="c_OrdParamB" label="Ord Param B"

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 27 of 70

 parameterRef="p_OrdParamB"
 xsi:type="lay:SingleSpinner_t"/>
 <lay:StrategyPanel orientation="HORIZONTAL">
 <lay:StrategyPanel orientation="VERTICAL">
 <lay:Control ID="c_BuyLegParamA" label="Buy Leg Param A"
 parameterRef="p_Buy_Leg_ParamA"
 xsi:type="lay:SingleSpinner_t"/>
 <lay:Control ID="c_BuyLegParamB" label="Buy Leg Param B"
 parameterRef="p_Buy_Leg_ParamB"
 xsi:type="lay:SingleSpinner_t"/>
 </lay:StrategyPanel>
 <lay:StrategyPanel orientation="VERTICAL">
 <lay:Control ID="c_SellLegParamA" label="Sell Leg Param A"
 parameterRef="p_Sell_Leg_ParamA"
 xsi:type="lay:SingleSpinner_t"/>
 <lay:Control ID="c_SellLegParamB" label="Sell Leg Param B"
 parameterRef="p_Sell_Leg_ParamB"
 xsi:type="lay:SingleSpinner_t"/>
 </lay:StrategyPanel>
 </lay:StrategyPanel>
 </lay:StrategyPanel>
 </lay:StrategyLayout>
</Strategy>

Note that in the latter example there is no support for delivery by the NewOrderMultiLeg(35=AB) message. The
assumption being that the OMS ‘s lack of support for leg parameters is due to the way it handles its collection of
NewOrderSingle(35=D) messages. It is reasonable to expect that an OMS which supports delivery by
NewOrderMultiLeg(35=AB) message will also be able to support leg parameters.

3.9 Additional Global Definitions

FIXatdl® supports the global definition of Parameter, Control, StrategyPanel, Edit, StateRule and Filter
elements. This allows them to be defined once and referenced within multiple Strategy elements, thus making the
XML less verbose and more readable.

3.10 OMS Hooks

One of the key features of FIXatdl® is the ability to refer to OMS variables in the description of order interfaces. In
effect, a FIXatdl® instance would have a “hook” into the OMS and have access to certain environment variables or
order parameters not defined in the XML for use in validation rules or filtering.

3.10.1 Validation Rules with References to Standard FIX Fields

In the FIXatdl® specification, several references are made to standard FIX fields. For example, the specification of the
Edit element (see section Validation Rules), which is used to build validation or flow rules, states the following:

The “field” attribute of an Edit element is not restricted to strategy parameters. Standard order tags (those not
described in a FIXatdl® instance but nevertheless are required tags of order, cancel and cancel/replace messages) may
also be used to create Boolean expressions.

For example:

<StrategyEdit errorMessage="For IOC orders Participation Rate must be between 1 and 25">
 <Edit logicOperator="OR">
 <Edit field="FIX_TimeInForce" operator="NX"/>
 <Edit field="FIX_TimeInForce" operator="NE" value="3"/>
 <Edit logicOperator="AND">
 <Edit field="ParticipationRate" operator="GE" value="1"/>
 <Edit field="ParticipationRate" operator="LE" value="25"/>
 </Edit>
 </Edit>
</StrategyEdit>

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 28 of 70

Also, the section Dependencies and Structural Constraints beyond XML Schema states the following:

Within an Edit element the attributes field and field2 must refer to either a pre-declared parameter name or a
standard FIX tag name (taken from the normative FIX specification) pre-pended with the string “FIX_”.

The intention was that the OMS would make the standard FIX tags accessible and allow them to be referenced by the
validation rules. For example, in single-leg order definitions it is generally understood that Standard fields
(Symbol(55), Side(54), OrderQty(38), OrdType(40), Price(44), etc.) should not be included in the Parameter or Controls
declarations. OMS platforms tend to handle these separately from strategy parameters and display them regardless of
whether they are declared in the FIXatdl® code (or, if they are declared in FIXatdl®, they are somehow ignored, or
some special processing is involved.) FIXatdl® allows these fields to be referred to from within a validation rule.

This can work for a small number of fields; and in fact, some OMS platforms support this. But not all do, and the fields
they make accessible are not consistent.

FIXatdl® seeks to provide clarity concerning the use of standard fields and the fields of an order that an OMS would be
expected to make available. The following table lists the fields of an order which may be referenced in a validation
rule.

Field Name Tag
Number

Comments

Symbol 55 -

Side 54 -

OrderQty 38 -

OrdType 40 -

Price 44 -

StopPx 99 -

TimeInForce 59 -

HandlInst 21 -

ExecInst 18 This is a MultipleCharValue type. Values are space delimited and arranged in alpha-
numeric order.

SecurityType 167 -

TargetSubID 57 -

3.10.2 Filtering according to OMS Environment Values

FIXatdl® defines filtering of strategies based on regions, asset classes and markets. For example, the specification of
the Regions element (see section Element Definitions) includes the following:

This element defines the globally based regions to which the strategy is applicable. It serves as a container of Region
elements. To define a set of regions for a strategy, use one or more Region elements. The attribute Region/@inclusion
determines whether the region is included or excluded from the set.

If no Regions element is defined, then the strategy is applicable for *ALL* regions.

Filtering, however, is restricted to strategies. Other elements of a strategy, such as parameters or controls, cannot be
filtered. For example, the following strategy applies only to a specific combination of region, market, client and
security type.

<Strategy name="Tazer1" uiRep="Tazer" wireValue="Tazer" providerID="ABC">
 <!-- US only -->

 <Regions>
 <Region name="TheAmericas" inclusion="Include">
 <Country CountryCode="US" inclusion="Include"/>
 </Region>

https://www.fixtrading.org/online-specification/

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 29 of 70

 </Regions>
 <!-- Nasdaq only -->

 <Markets>
 <Market MICCode="XNAS" inclusion="Include"/>
 </Markets>
 <!-- Equities ("CS") only -->

 <SecurityTypes>
 <SecurityType name="CS" inclusion="Include"/>
 </SecurityTypes>
 ...

</Strategy>

The filtering capability can also be applied to parameters and controls to allow strategies with a set of parameters that
are applicable only to certain regions, markets or clients, to be defined in one Strategy element rather than several.

The following example describes a strategy with a parameter that is filtered by a region and an enumerated value of
another parameter filtered by the same region. Note that it makes use of a global filter definition.

<Filter id="US-filter">
 <Regions>
 <Region name="TheAmericas" inclusion="Include">
 <Country CountryCode="US" inclusion="Include"/>
 </Region>
 </Regions>
</Filter>

<Strategy>
 ...

 <Parameter name="StartTime" xsi:type="UTCTimestamp_t" fixTag="27602"/>
 <Parameter name="EndTime" xsi:type="UTCTimestamp_t" fixTag="27603"/>
 <Parameter name="Text" xsi:type="String_t" fixTag="29999" use="optional"/>
 <Parameter name="Variance" xsi:type="Float_t" fixTag="27641" filter="US-filter"/>
 <Parameter name="Benchmark" xsi:type="String_t" fixTag="27666">
 <EnumPair wireValue="Arrival" enumID="e_Arrival"/>
 <EnumPair wireValue="Close" enumID="e_Close"/>
 <EnumPair wireValue="Open" enumID="e_Open"/>
 <EnumPair wireValue="SectorETF" enumID="e_SectorETF" filter="US-filter"/>
 <StrategyLayout>
 ...

 <StrategyPanel orientation="HORIZONTAL">
 <Control xsi:type="TextField_t" ID="Variance" parameterRef="Variance"
 filter="US-filter">
 </Control>
 <Control xsi:type="DropDownList_t" parameterRef="Benchmark">
 <ListItem uiRep="Arrival" enumID="e_Arrival"/>
 <ListItem uiRep="Close" enumID="e_Close"/>
 <ListItem uiRep="Open" enumID="e_Open"/>
 <ListItem uiRep="SectorETF" enumID="e_SectorETF" filter="US-filter"/>
 </Control>
 </StrategyPanel>
 ...

 </StrategyLayout>
</Strategy>

The filtering criteria includes types of a client. More specifically, a list of client types can be defined in a
ClientGroups element. For example, a broker-dealer may classify a set of its clients as high frequency traders. A
client-group filter could be declared as follows:

<Filter id="US-HFT">
 <ClientGroups>
 <ClientGroup ID="HFT"/>
 </ClientGroups>
</Filter>

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 30 of 70

4 Element Definitions

A high-level description of the elements is provided in the following table.

Element Name Parent Element(s) Description

ClientGroup ClientGroups Used to define a client classification. For example, large traders may be
identified as <Client ID="LT"/>. Out-of-band coordination may be
required between an algo provider and an E/OMS vendor to define which
client fall under the specified categories.

ClientGroups Filter An element used to build a list of ClientGroup elements. Applicable when
filtering a Strategy based on the firms using the E/OMS.

Control Strategy,
StrategyPanel

Base element used to define GUI controls. Specific instances of controls
are defined using the XML Schema xsi:type. For example <Control
xsi:type="lay:TextField_t"/>, where TextField_t is a complex type
defined in the FIXatdl® Layout XML Schema.

ControlRef StrategyPanel A reference to a Control element.

Country Region An element used to build a list of countries that may be included or
excluded from a region. Its attribute, CountryCode, contains an ISO 3166-
1 alpha-2 code.

DeliveryMethods Strategy Indicates which FIX messages may be used to deliver orders from the
order originator to the order recipient.

Description Parameter,
EnumPair,
RepeatingGroup,
Strategies, Strategy

Text providing a description of its parent element.

Edit StrategyEdit,
StateRule, Strategies,
Strategy

Boolean expression evaluated in validation and flow control rules. An Edit
element will describe a condition that is either true or false.

An Edit element is most commonly used within StrategyEdit and StateRule
elements where its scope is limited to its parent element. However, when
an Edit is child of a Strategy element, its scope extends the entire Strategy
and can be reference by the child StateRule and StrategyEdit elements of
the Strategy element. When an Edit is a child of the Strategies element, its
scope extends the entire XML instance and may be referenced by any
StateRule or StrategyEdit.

EditRef StrategyEdit,
StateRule

Child of a StrategyEdit element used to refer to an Edit element which
was declared as a child of a Strategy or as a child of Strategies.

EnumPair Parameter Defines a legal value of a parameter in the form of a wire value. A
Parameter element will have an EnumPair element for each enumerated
value which the parameter can take.

Filter Strategies, Strategy Defines a filtering criterion to be used in conjunction with the filter
attribute of Parameter, EnumPair, Control and ListItem elements. Filter
elements can contain any number of Regions, Markets, SecurityTypes or
ClientGroups elements.

FixMsg DeliveryMethods Defines a type of FIX message that can be used when delivering orders.

HelpText Control Text describing the use of a particular GUI control. This element is used
when information about a control is lengthy and would only be
appropriate to display in a dialog box – not as a tooltip.

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 31 of 70

Element Name Parent Element(s) Description

LegPanel StrategyLayout,
StrategyPanel

Panel used to display leg-level controls.

ListItem Control Used for controls that let the user choose from a list of items. When a
Control element is mapped top a Parameter element, via means of the
Control element’s “parameterRef” attribute, each ListItem will contain a
reference to an EnumPair defined within the Parameter element.

Market Markets Used as a child element of the Markets element. Defines a particular
market using a market identifier code (MIC). An attribute, inclusion,
determines whether the market should be included or excluded from the
list of markets created by the patterned element, Markets.

Markets Strategy This element defines the markets/exchanges (by ISO 10383 MIC Code) of
which the strategy is applicable. If no Markets element is defined then the
strategy is applicable for *ALL* markets. If a market is defined and has its
‘inclusion’ attribute set to “Include”, then it is implied that the strategy is
applicable for *ONLY* that market. If a region is defined and is set to
“Exclude”, then it is implied that the strategy is applicable for all markets
EXCEPT that market.

Include takes precedence over Exclude - for example, if XNAS is defined
and set to “Include” and XLON is defined and set to “Exclude” then all
other markets will also be excluded since the “Include” on XNAS takes
precedence over the “Exclude” on XLON. In this example, the definition
of XLON as “Exclude” is unnecessary.

Markets are used in conjunction with regions and countries to define the
scope of the strategy. Markets take precedence over regions and
countries. For example, if AsiaPacificJapan is defined as “Exclude” but the
Fukuoka Stock Exchange (XFKA) is defined as an included market, the
strategy will be applicable for all markets in The Americas and EMEA, as
well as only the Fukuoka Stock Exchange in the APAC region.

Parameter Strategy,
RepeatingGroup

Element to define the characteristics of an algo parameter with respect to
the data interface with the algo provider.

Region Regions An individual region used as a child element of the Regions element.

Regions Strategy This element defines the globally based regions to which the strategy is
applicable. It serves as a container of Region elements. To define a set of
regions for a strategy use one or more Region elements. Region elements
contain the attribute “inclusion” that determines whether the region is
included from the set or excluded.

If no Regions element is defined, then the strategy is applicable for ALL
regions. If a region is defined and has its ‘inclusion’ attribute set to
“Include”, then it is implied that the strategy is applicable for ONLY that
region. If a region is defined and is set to “Exclude”, then it is implied that
the strategy is applicable for all regions EXCEPT that region.

“Include” takes precedence over “Exclude” - for example, if
“TheAmericas” is defined and set to “Include” and
“EuropeMiddleEastAfrica” is defined and set to “Exclude” then
“AsiaPacificJapan” will also be excluded since the “Include” on
“TheAmericas” takes precedence over the “Exclude” on
“EuropeMiddleEastAfrica”. In this example, the definition of
“EuropeMiddleEastAfrica” as “Exclude” is unnecessary.

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 32 of 70

Element Name Parent Element(s) Description

Regions also contain a child element called “Country” that allows the algo
author to further specify the geographic scope of the strategy. Countries
can be included and excluded in the same manner as regions and the
same rules of precedence apply. Please see fixatdl-regions-1-2.xsd for the
list of ISO 3166 Country Code to region mappings.

RepeatingGroup Strategy Container of a group of Parameter elements that are intended for use
with multileg or basket strategies.

Parameters contained within a RepeatingGroup element are intended to
have their tag=value pairs populated in either the ListOrdGrp repeating
group of a NewOrderList(35=E) message or the LegOrdGrp repeating
group of a NewOrderMultileg(35=AB) message.

Parameters not contained within a RepeatingGroup element have their
values populated in the main body of a message.

SecurityType SecurityTypes An element used to describe a security type that may be included or
excluded from the list built by the parent element, SecurityTypes. Its
attribute, “name”, contains a FIX SecurityType(167) value.

SecurityTypes Strategy The list of security types (by SecurityType(167)) for which the given
strategy is valid. The absence of any security types implies that the
strategy is valid for all security types.

StateRule Control Defines workflow rule for a Control. Defines a workflow rule for a GUI
control. Using StateRule as a child element of a Control element, rules can
be defined which affect the “enabled” and “hidden” properties of the
underlying Java/.Net/Web/etc. rendered on the screen.

A StateRule element must contain a child Edit element. The action defined
by the StateRule is in-effect when the condition described by its child Edit
element is true. The action is not in-effect when the condition described
by its child Edit element is false.

Strategies [n/a] Container for all strategy elements. It is the root element of all FIXatdl®
conforming documents.

Strategy Strategies Root level of a strategy definition.

StrategyEdit Strategy Definition of a validation rule. A StrategyEdit element must contain an
Edit element as a child. The boolean expression described by the Edit
element is an assertion, i.e., validation succeeds if the condition described
by the Edit is true and fails when the condition described by the Edit
element is false. In the case where validation fails, the error message,
supplied by the errorMessage attribute of StrategyEdit, may be displayed
to an OMS user or logged.

StrategyLayout Strategy Container for StrategyPanel elements. If declared, a StrategyLayout
element must contain at least one StrategyPanel as a child element.

StrategyPanel StrategyLayout,
StrategyPanel

Container for either groups of parameters or StrategyPanel elements, but
not both. I.e., a StrategyPanel element will contain either all Control
elements or all StrategyPanel elements.

StrategyPanelRef StrategyLayout,
StrategyPanel

A reference to a StrategyPanel element.

VendorConfig Strategy Element used to describe the requirements necessary for the E/OMS to
support for the parent strategy to be applicable. Attributes are

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 33 of 70

Element Name Parent Element(s) Description

“legParameters” (indicating whether parameters can be included in the
legs of multileg orders) and “tag66support” (requiring the E/OMS to
populate ListID(66) to link together components of a multileg order).

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 34 of 70

5 Attribute Definitions of Elements

The following tables describe the attributes of all the FIXatdl® XML elements. The format of the attribute name is

<element name>/@<attribute> where the element is one of the XML elements defined by FIXatdl®.

Since some of the attributes are overloaded due to the way the Parameter and Control elements can be extended,
types of certain attributes will depend on the type of the element. For these attributes, the conditions determining
their type will be listed in their description.

Attributes that are applicable to extensions of the Parameter and Control elements have not been included in the
tables. These are defined in section Abstract Element Extensions.

5.1 Client Element

Attribute Type Req’d Description

Client/@ID string Y Used to define a client classification. For example, large traders may be identified as
<Client ID="LT"/>.

5.2 Control Element

Attribute Type Req’d Description

Control/@checkedEnumRef StringID N Refers to an enumID defined in the definition of the
Parameter referred by Control/@parameterRef. This
enumID is the output from this control if it is
checked/selected.

(See the section A Sample FIXatdl® Document in this
document for an example. Examine the Parameter
“AllowDarkPoolExec” and Control “DPOption” for
details.)

Applicable when xsi:type is CheckBox_t or
RadioButton_t.

Control/@col non-negative
int

N Column in which this item is to appear in a grid-oriented
panel.

Applicable when encompassing StrategyPanel
orientation is GRID.

Control/@colSpan non-negative
int

N Number of colums an item is to span in a grid-oriented
panel. (Default: 1)

Applicable when encompassing StrategyPanel
orientation is GRID.

Control/@disableForTemplate boolean N For implementing systems that support saving order
templates or pre-populated orders for basket
trading/list trading this attribute specifies that the
control should be disabled when the order screen is
going to be saved as a template and not actually used to
place an order.

Control/@disablingControlType string N Description of the GUI control to be rendered which
directs the OMS to disable the clock (greyed-out with
null value) and block users from providing input.

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 35 of 70

Attribute Type Req’d Description

Valid values:

• CheckBox

• RadioButton

• DropDown

Control/@disablingControlText String N Text to display next to the disabling GUI control.
Intended to describe the effective result of explicitly
disabling the clock via its disabling control.

Control/@displayableDate boolean N Instructs the OMS to display the date.

Applicable when xsi:type is Clock_t (default: false)

Control/@displayableTz boolean N Instructs the OMS to display the time zone associated
with the value entered by the user.

Applicable when xsi:type is Clock_t (default: true)

Control/@editableDate boolean N Instructs the OMS to allow the user to change the date.
The OMS would decide how to do this.

Applicable when xsi:type is Clock_t (default: true)

Control/@editableTz boolean N Instructs the OMS to allow the user to change the time
zone. The OMS would decide how to do this.

Applicable when xsi:type is Clock_t (default: false)

Control/@enablingControlType string N Description of the GUI control to be rendered which
directs the OMS to enable the clock and allow it to
accept user input.

If an OMS supports this feature and
enablingControlType is provided, then the OMS may
render a GUI control of this type next to the GUI control
intended to accept datetime values from the user.

Valid values:

• CheckBox

• RadioButton

• DropDown

Control/@ID StringID Y Unique identifier of this control. No two controls of the
same strategy can have the same ID.

Control/@increment decimal N Limits the granularity of a spinner control. Useful in
spinner objects to enforce odd-lot and sub-penny
restrictions.

Applicable when xsi:type is SingleSpinner_t or Slider_t.
(In this case a Slider_t must be used to select a value
within a continuous range, say a decimal value between
a minimum and maximum value. As opposed to the
case where the Slider_t is used to select from a set of
values not unlike a DropDownList_t.)

Control/@incrementPolicy string N For single spinner control, defines how to determine the

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 36 of 70

Attribute Type Req’d Description

increment.

Valid values:

• Static – use value from increment attribute

• LotSize – use the round lot size of symbol. (If
this value is not available, use the value from
the increment attribute.)

• Tick – use symbol minimum tick size. (If this
value is not available, use the value from the
increment attribute.)

Applicable when xsi:type is SingleSpinner_t.

If no value is supplied then use value from increment
attribute.

Please note: The schema file, fixatdl-layout-1-2.xsd,
does not include the “Static” enumeration value. If
“Static” behavior is desired then do not populate this
attribute.

Control/@initFixField positiveInteger N Indicates the initialization value is to be taken from this
standard FIX field. Format: “FIX_” + FIXFieldName. E.g.
“FIX_OrderQty”.

Required when initPolicy=“UseFixField”.

Control/@initPolicy string N Describes how to initialize the control.

If the value of this attribute is undefined or equal to
“UseValue” and initValue is defined then initialize with
initValue.

If the value is equal to “UseFixField” then attempt to
initialize with the value of the tag specified in
initFixField. If the value is equal to “UseFixField” and it is
not possible to access the value of the specified FIX tag
then revert to using initValue. If the value is equal to
“UseFixField”, the field is not accessible, and initValue is
not defined, then do not initialize.

Valid values:

• UseValue

• UseFixField

Control/@initValue (Depends on
value of
xsi:type)

N The value used to pre-populate the GUI component
when the order entry screen is initially rendered. The
type of initValue is dependent on the value of
Control/@xsi:type.

The following list gives the type of this attribute based
on the value of xsi:type.

xsi:type: initValue type

Clock_t: time
TextField_t: string
SingleSelectList_t: string
MultiSelectList_t: MultipleStringValue

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 37 of 70

Attribute Type Req’d Description

Slider_t: double
CheckBox_t: boolean (“true”/“false”)
CheckBoxList_t: MultipleStringValue
SingleSpinner_t: double
DoubleSpinner_t double
DropDownList_t string
EditableDropDownList_t: string
RadioButton_t: boolean (“true”/“false”)
RadioButtonList_t: string
Label_t: string
HiddenField_t: string

The use of initValue also depends on the value of
xsi:type.

xsi:type: initValue use

Clock_t: time (expressed in Control/@localMktTz)
TextField_t: string
SingleSelectList_t: enumID of a child ListItem
MultiSelectList_t: enumIDs of child ListItems
Slider_t: valid value returned by the slider
CheckBox_t: “true” (checked) or “false” (unchecked)
CheckBoxList_t: enumIDs of ListItems to be checked
(separated by single spaces)
SingleSpinner_t: double
DoubleSpinner_t: double
DropDownList_t: enumID of a child ListItem
EditableDropDownList_t: enumID of a child ListItem
RadioButton_t: “true” (selected) or “false” (unselected)
RadioButtonList_t: enumID of ListItem to be pushed
Label_t: string to render
HiddenField_t: non-displayed string

Required when initPolicy=“UseValue”.

Control/@initValueMode int N Defines the treatment of initValue time. 0: use
initValue; 1: use current time if initValue time has
passed.

The default value is 0.

Applicable only when Control/@xsi:type is Clock_t.

Control/@innerIncrement decimal N Limits the granularity of the inner spinner of a double
spinner control. Useful in spinner objects to enforce
odd-lot and sub-penny restrictions.

Applicable when xsi:type is DoubleSpinner_t.

Control/@innerIncrementPolicy string N For double spinner control, defines how to determine
the increment for the inner set of spinners.

Valid values:

• Static – use value from innerIncrement
attribute

• LotSize – use the round lot size of symbol

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 38 of 70

Attribute Type Req’d Description

• Tick – use symbol minimum tick size

Applicable when xsi:type is DoubleSpinner_t.

If no value is supplied then use value from
innerIncrement attribute.

Please note: The schema file, fixatdl-layout-1-2.xsd,
does not include the “Static” enumeration value. If
“Static” behavior is desired then do not populate this
attribute.

Control/@label string N A title for this control which may be displayed.

If the control is a Label_t then Control/@label or
Control/@initValue must be used to define the string
which is to be rendered. If both attributes are provided
then Control/@initValue takes precedence.

Control/@localMktTz LocalMktTz N The timezone in which initValue is represented in.
Required when initValue is supplied.

Applicable when xsi:type is Clock_t.

Control/@orientation Orientation Y Declares the orientation of the radio buttons within a
RadioButtonList or the checkboxes within a
CheckBoxList.

Valid values:

• HORIZONTAL

• VERTICAL

Applicable when xsi:type is RadioButtonList_t or
CheckBoxList_t.

Control/@outerIncrement decimal N Limits the granularity an outer spinner of a double
spinner control. Useful in spinner objects to enforce
odd-lot and sub-penny restrictions.

Applicable when xsi:type is DoubleSpinner_t.

Control/@outerIncrementPolicy string N For double spinner control, defines how to determine
the increment for the outer set of spinners.

Valid values:

• Static – use value from outerIncrement
attribute

• LotSize – use the round lot size of symbol

• Tick – use symbol minimum tick size

Applicable when xsi:type is DoubleSpinner_t.

If no value is supplied then use value from
outerIincrement attribute.

Please note: The schema file, fixatdl-layout-1-2.xsd,
does not include the “Static” enumeration value. If
“Static” behavior is desired then do not populate this
attribute.

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 39 of 70

Attribute Type Req’d Description

Control/@parameterRef StringID N The name of the parameter for which this control gives
the visual representation. A parameter with this name
must be defined within the same strategy as this
control.

Control/@radioGroup String N Identifies a common group name used by a set of
RadioButton_t among which only one radio button may
be selected at a time.

Applicable when xsi:type is RadioButton_t.

Control/@row non-negative
int

N Row in which this item is to appear in a grid-oriented
panel.

Applicable when encompassing StrategyPanel
orientation is GRID.

Control/@rowSpan non-negative
int

N Number of rows an item is to span in a grid-oriented
panel. (default: 1)

Applicable when encompassing StrategyPanel
orientation is GRID.

Control/@tooltip string N Tool tip text for rendered GUI objects rendered for the
parameter.

Control/@uncheckedEnumRef StringID N Refers to an enumID defined in the definition of the
parameter referred by Control/@parameterRef. This
enumID is the output from this control if it is
unchecked/unselected.

(See the section A Sample FIXatdl® Document in this
document for an example. Examine the parameter
“AllowDarkPoolExec” and Control “DPOption” for
details.)

Applicable when xsi:type is CheckBox_t or
RadioButton_t.

Control/@xsi:type string Y Indicates the type of GUI control that should be
rendered on the screen.

Valid values:

• CheckBox_t

• CheckBoxList_t

• Clock_t

• DoubleSpinner_t

• DropDownList_t

• EditableDropDownList_t

• HiddenField_t

• Label_t

• MultiSelectList_t

• RadioButton_t

• RadioButtonList_t

• SingleSelectList_t

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 40 of 70

Attribute Type Req’d Description

• SingleSpinner_t

• Slider_t

• TextField_t

5.3 Country Element

Attribute Type Req’d Description

Country/@CountryCode String restricted to
“[A-Z0-9]{2}”

Y ISO 3166-1 alpha-2 code for the countries to include or
exclude in a given region.

Country/@inclusion string Y Indicates whether this country should be included or
excluded from encompassing list.

Valid values:

• Include

• Exclude

5.4 Edit Element

Attribute Type Req’d Description

Edit/@field string N Field name for comparison. When the edit is used within a
StateRule, this field must refer to the ID of a Control. When the edit
is used within a StrategyEdit, this field must refer to either the
name of a parameter or a standard FIX field name. When referring
to a standard FIX tag then the name must be pre-pended with the
string “FIX_”, e.g. “FIX_OrderQty”.

Required when: Edit/@operator is defined.

Edit/@field2 string N Value used as the second operand. Used in conjunction with
Edit/@field and Edit/@operator. Similar definition to Edit/@field
except that it is mutually exclusive with Edit/@value.

Required when: Edit/@operator is in {GE,GT, LE, LT, EQ, NE} and
Edit/@value is not specified.

Edit/@id string N Optional identifier. Allows for re-use of this edit within StateRule or
EditRef elements. This attribute is required if the Edit element is a
direct child of either the Strategies or Strategy elements.

Edit/@legNo non-negative
int

N Used in conjunction with Edit/@field, declares the leg number of
which the field is to be retrieved when the field is evaluated.

Edit/@logicOperator LogicalOperator N Operator where operands are one or more Edit elements. Short-
circuit evaluation is assumed in all edit statements.

Valid values:

• AND

• OR

• XOR

• NOT

Required when operator is not present. An edit element must

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 41 of 70

Attribute Type Req’d Description

contain either a logicOperator attribute or an operator attribute,
but never both.

By convention, XOR returns true when one and only one of its
operands is true.

Edit/@operator Operator N One of the following enumerated types:

• EX (Exists. I.e. the user has entered a value)

• NX (Not exists. I.e. the user has not entered a value)

• EQ (Equal)

• LT (Less than)

• GT (Greater than)

• NE (Not equal)

• LE (Less than equal)

• GE (Greater than equal)

Required when logicOperator is not present. An Edit element must
contain either a logicOperator attribute or an operator attribute,
but never both.

Edit/@value string N Value used as the second operand. Used in conjunction with
Edit/@field and Edit/@operator. Represents a string literal value
and not a reference.

When Edit is a descendant of a StateRule element, Edit/@value
refers to the value of the control referred by Edit/@field. If the
control referred by Edit/@field has enumerated values then
Edit/@value refers to the enumID of one of the control’s ListItem
elements.

When Edit is a descendant of a StrategyEdit element, Edit/@value
refers to the wireValue of the parameter referred by Edit/@field.

Required when: Edit/@operator is in {GE, GT, LE, LT, EQ, NE} and
Edit/@field2 is not specified.

EditRef/@id string Y Refers to an ID of a previously defined Edit element. The
Editelement may be defined at the strategy level or at the
strategies level.

5.5 EnumPair Element

Attribute Type Req’d Description

EnumPair/@enumID StringID Y A unique identifier of an enumPair element per parameter.

EnumPair/@index integer N Deprecated. Previously defined an ordering of the enumerated values. If
defined it should be ignored.

EnumPair/@wireValue string Y The corresponding value that is used to populate the FIX message.

5.6 Filter Element

Attribute Type Req’d Description

Filter/@id StringID Y An identifier for a global filter definition. Elements which declare a filter attribute

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 42 of 70

Attribute Type Req’d Description

must have it refer to a global filter ID.

5.7 FixMsg Element

Attribute Type Req’d Description

FixMsg/@msgType string Y Method in which the algo provider can accept this type of order.

Valid values:

• NewOrderSingle

• NewOrderMultileg

• NewOrderList

5.8 ListItem Element

Attribute Type Req’d Description

ListItem/@enumID StringID N A reference to the enumPair specified in the parameter definition specified
by the parent Control’s parameterRef attribute. Use is optional when the
parent Control element does not refer to a parameter.

Required when: the parent Control element has a defined parameterRef
attribute.

ListItem/@uiRep string Y The value shown in the list. These are the values that go into Java, .Net or
Web list controls.

5.9 Market Element

Attribute Type Req’d Description

Market/@inclusion string Y Indicates whether this market should be included or excluded from
encompassing list.

Valid values:

• Include

• Exclude

Market/@MICCode string Y String representing a market or exchange – ISO 10383 Market Identifier Code
(MIC).

5.10 Parameter Element

Attribute Type Req’d Description

Parameter/@constValue (Depends on
value of
xsi:type)

N The value of a parameter that is constant and is not
referred by a Control element. This value must be sent on
the wire by the order generating application.

The following list gives the type of this attribute based on
the value of xsi:type.

xsi:type: constValue type

Int_t: int

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 43 of 70

Attribute Type Req’d Description

Length_t: positiveInteger
NumInGroup_t: positiveInteger
SeqNum_t: positiveInteger
TagNum_t: positiveInteger
Float_t: decimal
Qty_t: Qty
Price_t: Price
PriceOffset_t: PriceOffset
Amt_t: Amt
Percentage_t: Percentage
Char_t: char
Boolean_t: Boolean (‘Y’/‘N’)
String_t: string
MultipleCharValue_t: MultipleCharValue
Currency_t: Currency
Exchange_t: Exchange
MonthYear_t: MonthYear
UTCTimestamp_t: time
UTCTimeOnly_t: time
LocalMktDate_t: date
UTCDateOnly_t: UTCDateOnly
Data_t: Data
MultipleStringValue_t: MultipleStringValue
Country_t: Country
Language_t: language
TZTimestamp_t: time
TZTimeOnly_t: TZTimeOnly
Tenor_t: Tenor

When defined in UTCTimestamp_t elements the following
apply:

• Contains only time information – not day,
month or year.

• Used in conjunction with
Parameter/@localMktTz, this value must be
used for the time portion of a UTCTimestamp
that is sent on the wire by the order
generating application. For example, if
constValue=“08:30:00” and
localMktTz=“America/Chicago”, daylight
savings time is in effect in Chicago and the
date is July 1, 2010, then the value
“20100701-13:30:00” would be sent on the
wire.

Parameter/@definedByFIX boolean N Indicates whether the parameter is a redefinition of a
standard FIX tag. The default value is False.

For example, if the algorithm redefines the OrderQty(38)
then the parameter declaration may be similar to:

<Parameter name="OrderQty" xsi:type="Qty_t"
 fixTag="38" definedByFIX="true"
 use="required"/>

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 44 of 70

Attribute Type Req’d Description

Parameter/@falseWireValue string N Applicable only when xsi:type is Boolean_t.

This attribute is targeted for deprecation.

To achieve the same functionality, it is recommended
that a Char_t or String_t type parameter be used instead
of a Boolean_t. The parameter should have two
EnumPairs defined with one defining the false wire-value
and the other defining the true wire-value. The
parameter should be bound to a CheckBox control. The
CheckBox control should define the parameters
checkedEnumRef and uncheckedEnumRef to refer to the
enumIDs of the parameter. (See the section A Sample
FIXatdl® Document in this document for an example.
Examine the Parameter “AllowDarkPoolExec” and Control
“DPOption” for details.)

The deprecated use is described as follows:

Defines the value with which to populate the FIX message
when the boolean parameter is False. Overrides the
standard FIX boolean value of “N”. I.e. if this attribute is
not provided then the order-sending application must use
“N”.

If it is desired that the FIX message is not to be populated
with this tag when the value of the parameter is false,
then falseWireValue should be defined as “{NULL}”.

Parameter/@filter string N Refers to the ID of a globally defined filter. Affects
whether the parameter is applicable in the strategy.

Parameter/@fixTag positiveInteger N The tag that will hold the value of the parameter.

Required when: parameter value is intended to be
transported over the wire.

If fixTag is not provided then the Strategies-level
attribute, tag957Support, must be set to true, indicating
that the order recipient expects to receive algo
parameters in the StrategyParameterGrp repeating group
beginning at tag 957.

Parameter/@invertOnWire boolean N Applicable when: xsi:type is MultipleStringValue_t or
MultipleCharValue_t.

Instructs the OMS whether to perform a bitwise “not”
operation on each element of these lists.

Parameter/@localMktTz string N Describes the time zone without indicating whether
daylight savings is in effect. Valid values are taken from
names in the Olson time zone database. All are of the
form Area/Location, where Area is the name of a
continent or ocean, and Location is the name of a specific
location within that region. E.g. America/Chicago.

Applicable when xsi:type is UTCTimestamp_t.

Parameter/@maxLength non-negative N Applicable when xsi:type is String_t, MultipleCharValue_t

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 45 of 70

Attribute Type Req’d Description

int or MultipleStringValue_t.

The maximum allowable length of the parameter.

Parameter/@maxValue (Depends on
value of
xsi:type)

N Maximum value of the parameter accepted by the
algorithm provider.

The following list gives the type of this attribute based on
the value of xsi:type.

xsi:type: initValue type

Int_t: int
Float_t: decimal
Qty_t: Qty
Price_t: Price
PriceOffset_t: PriceOffset
Amt_t: Amt
Percentage_t: Percentage
MonthYear_t: MonthYear
UTCTimestamp_t: time
UTCTimeOnly_t: time
LocalMktDate_t: date
UTCDateOnly_t: UTCDateOnly
TZTimestamp_t: time
TZTimeOnly_t: TZTimeOnly
Tenor_t: Tenor

This attribute is applicable only for the xsi:type values
listed above.

maxValue has no default value.

When defined in UTCTimestamp_t elements the following
applies:

• Maximum local market time. Represents an
instance of time that recurs every day.
Contains only time information – not day,
month or year.

• Used in conjunction with
Parameter/@localMktTz, this value represents
the maximum time of day allowed for the
parameter.

Parameter/@minLength non-negative
int

N Applicable when xsi:type is String_t.

The minimum allowable length of the parameter.

Parameter/@minValue (Depends on
value of
xsi:type)

N Minimum value of the parameter accepted by the
algorithm provider.

The following list gives the type of this attribute based on
the value of xsi:type. Default values, where applicable,
are provided, otherwise minValue has no default value.

xsi:type: initValue type (default)

Int_t: int
Float_t: decimal
Qty_t: Qty (0)

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 46 of 70

Attribute Type Req’d Description

Price_t: Price (0)
PriceOffset_t: PriceOffset (0)
Amt_t: Amt (0)
Percentage_t: Percentage (0)
MonthYear_t: MonthYear
UTCTimestamp_t: UTCTimestamp
UTCTimeOnly_t: time
LocalMktDate_t: date
UTCDateOnly_t: UTCDateOnly
TZTimestamp_t: time
TZTimeOnly_t: TZTimeOnly
Tenor_t: Tenor

This attribute is applicable only for the xsi:type values
listed above.

When defined in UTCTimestamp_t the following applies:

• Minimum local market time. Represents an
instance of time that recurs every day.
Contains only time information – not day,
month or year.

• Used in conjunction with
Parameter/@localMktTz, this value represents
the minimum time of day allowed for the
parameter.

Parameter/@multiplyBy100 boolean N Applicable for xsi:type of Percentage_t. If true then
percent values must be multiplied by 100 before being
sent on the wire. For example, if multiplyBy100 were
false then the percentage, 75%, would be sent as 0.75 on
the wire. However, if multiplyBy100 were true then 75
would be sent on the wire.

If not provided it should be interpreted as false.

Use of this attribute is not recommended. The
motivation for this attribute is to maximize compatibility
with algorithmic interfaces that are non-compliant with
FIX in regard to their handling of percentages. In these
cases an integer parameter should be used instead of a
percentage.

Parameter/@mutableOnCxlRpl boolean N Indication of whether the parameter’s value can be
modified by an OrderCancelReplaceRequest(35=G)
message.

Default value: true

Parameter/@name string
restricted to
“[A-Za-z]
[A-Za-z0-9_]
{0,255}”

Y The name of the parameter. No two parameters of any
strategy may have the same name. The name may be
used as a unique key when referenced from the other
sub-schemas. Names must begin with an alpha character
followed only by alpha-numeric characters and must not
contain whitespace characters.

Parameter/@precision non-negative
int

N The number of digits to the right of the decimal point in
which to round when populating the FIX message. Lack of

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 47 of 70

Attribute Type Req’d Description

this attribute indicates that the value entered by the user
should be taken as-is without rounding.

Applicable when xsi:type is Float_t, Price_t, PriceOffset_t
or Qty_t.

Parameter/@revertOnCxlRpl boolean N Indicates how to interpret those tags that were populated
in an original order but are not populated in a subsequent
cancel/replace of the order message. If this value is true
then revert to the value of the original order, otherwise a
null value or the parameter’s default value
(Control/@initValue) is to be used or if none is specified,
the parameter is to be omitted.

Default value: false

NOTE: Although revertOnCxlRpl and mutableOnCxlRpl
might appear to be mutually exclusive, this is not strictly
the the case, and as the default value for
mutableOnCxlRpl is ‘true’, it is recommended practice to
explicitly include mutableOnCxlRpl=“false” if the option
revertOnCxlRpl=“true” is set for a given parameter
(assuming of course this is the intended behaviour).

Parameter/@scope string N The scope of the parameter. Applicable to a multileg
order type.

Valid values:

• LEG (indicating the parameter appears in the
legs of the order)

• ORDER (indicating it appears in the main body
of the order)

Parameter/@trueWireValue string N Applicable only when xsi:type is Boolean_t.

This attribute is targeted for deprecation.

To achieve the same functionality, it is recommended
that a Char_t or String_t type parameter be used instead
of a Boolean_t. The parameter should have two
EnumPairs defined with one defining the false wire-value
and the other defining the true wire-value. The
parameter should be bound to a CheckBox control. The
CheckBox control should define the parameters
checkedEnumRef and uncheckedEnumRef to refer to the
enumIDs of the parameter. (See the section A Sample
FIXatdl® Document in this document for an example.
Examine the Parameter “AllowDarkPoolExec” and Control
“DPOption” for details.)

The deprecated use is described as follows:

Defines the value with which to populate the FIX message
when the boolean parameter is True. Overrides the
standard FIX boolean value of “Y”. I.e. if this attribute is
not provided then the order-sending application must use
“Y”.

If it is desired that the FIX message is not to be populated

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 48 of 70

Attribute Type Req’d Description

with this tag when the value of the parameter is false,
then falseWireValue should be defined as “{NULL}”.

Parameter/@use Use_t N Indicates whether a parameter is optional or required.

Valid values:

• optional (default)

• required

Parameter/@xsi:type string Y Indicates the type of the parameter. The type of the
parameter determines which of the extended attributes
are applicable. The namespace, xsi, must be declared
within the Strategies element with the statement:
xmlns:xsi=http://www.w3.org/2001/XMLSchema-
instance.

Valid values:

• Amt_t

• Boolean_t

• Char_t

• Country_t

• Currency_t

• Data_t

• Exchange_t

• Float_t

• Int_t

• Language_t

• Length_t

• LocalMktDate_t

• MonthYear_t

• MultipleCharValue_t

• MultipleStringValue_t

• NumInGroup_t

• Percentage_t

• Price_t

• PriceOffset_t

• Qty_t

• SeqNum_t

• String_t

• TagNum_t

• Tenor_t

• TZTimeOnly_t

• TZTimestamp_t

• UTCDateOnly_t

• UTCTimeOnly_t

• UTCTimestamp_t

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 49 of 70

5.11 Region Element

Attribute Type Req’d Description

Region/@inclusion string Y Indicates whether this region should be included or excluded when declared
within a list of regions.

Valid values:

• Include

• Exclude

Region/@name String Y The name of the region.

Valid values:

• TheAmericas

• EuropeMiddleEastAfrica

• AsiaPacificJapan

5.12 RepeatingGroup Element

Attribute Type Req’d Description

RepeatingGroup/@fixTag int N The FIX tag corresponding to a NoXXX tag. Indicates that the Parameter
elements defined within the RepeatingGroup element are repeating
group tags when sent over the wire.

Valid values:

• 555 (NoLegs)

• 68 (TotNoOrders)

In the case where fixTag=68, either multiple NewOrderList(35=E)
messages may be sent where the total number of orders over the
entire list must be equal to Strategy/@totalOrders, or multiple
NewOrderSingle(35=D) messages may be sent where total number of
orders must be equal to Strategy/@totalOrders.

RepeatingGroup/@maxSize int N The maximum number of legs or list orders.

RepeatingGroup/@minSize int Y The minimum number of legs or list orders.

RepeatingGroup/@name string N FIX Field name of the repeating group. Must refer to a FIX field of
NumInGroup type.

Valid values:

• TotNoOrders (when NewOrderList(35=E) messages are
expected)

• NoLegs (when NewOrderMultileg(35=AB) messages are
expected)

This field should be omitted when NewOrderSingle(35=D) messages
are expected.

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 50 of 70

5.13 SecurityType Element

Attribute Type Req’d Description

SecurityType/@inclusion string Y Indicates whether this security type should be included or excluded from
encompassing list.

Valid values:

• Include

• Exclude

SecurityType/@name string Y Indicates type of security. Valid values equivalent to FIX
SecurityType(167) values.

5.14 StateRule Element

Attribute Type Req’d Description

StateRule/@enabled boolean N Indicates whether or not to enable the control when the edit expression of
the StrategyEdit element evaluates to True. The desired behavior is as
follows:

• when the StateRule element’s edit condition is true and
enabled=true then enable the control;

• when the edit condition is true and enabled=false then disable
the control;

• when the edit condition is false and enable=true then disable
the control;

• when the edit condition is false and enabled=false then enable
the control.

The value of a control’s “enabled” property does not play a role in
determining whether a value is populated when a FIX order message is
generated. I.e. A control’s “enabled” property does not influence what
goes out on the wire.

StateRule/@value string N GUI control’s displayed value should be set to this value when edit
condition is true. Although the type of this attribute has been listed as
string, ultimately the type of this attribute must be compatible with the
type of the control. For example, if the control is numeric, such as a
SingleSpinner, then a string containing a numeric value would an
appropriate value (e.g. “15”).

If the control contains ListItem elements then allowable values of
StateRule/@value are restricted to the enumIDs of the ListItem elements.

A special token, “{NULL}”, may be used for the value of this attribute to
indicate that the control should be set to an uninitialized state. Controls
that are un-initialized should have no value. The effect of an un-initialized
control is as follows: When an order is to be generated, the controls which
are linked to parameters will have their values retrieved. If there is no
retrieved value because the control was un-initialized then the parameter
should have no value and its associated FIX tag should be excluded from
the message. This is relevant only for controls that can be in an un-
initialized state such as spinners and text fields. Controls such as check
boxes and radio buttons are always initialized. (They are either checked or
unchecked.)

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 51 of 70

Attribute Type Req’d Description

StateRule/@visible boolean N Indicates whether or not to show the control when the boolean expression,
defined by the Edit element, evaluates to True. The desired behavior is as
follows: when the StateRule element’s edit condition is true and
visible=true then display the control; when the edit condition is true and
visible=false then hide the control; when the edit condition is false and
visible=true then hide the control; when the edit condition is false and
enabled=false then display the control.

5.15 Strategies Element

Attribute Type Req’d Description

Strategies/@changeStrategyOnCxlRpl boolean N Indicates whether a new strategy can be chosen
during a Cancel/Replace.

Strategies/@draftFlagIdentifierTag positiveInteger N The tag within the FIX order message to be
populated with a boolean (‘Y’/‘N’) indicating
whether the order is a draft.

Strategies/@imageLocation string N Filepath or URL of an image file or logo of the algo
providing firm.

Strategies/@strategyIdentifierTag positiveInteger Y The tag within the FIX order message to be
populated with a value identifying the chosen
strategy. E.g. if strategyIdentifierTag is 25001 and
the chosen strategy is identified by the value
‘VWAP’ then the FIX order message would contain
the tag-value pair 25001=VWAP.

Strategies/@versionIdentifierTag positiveInteger N The tag within the FIX order message to be
populated with a value identifying the version of a
chosen strategy. For example, if
versionIdentifierTag is 25002 and the version of the
chosen strategy is ‘2.01’ then the FIX order
message would contain the tag-value pair
25001=2.01

Strategies/@tag957Support boolean N Indicates whether the order recipient can receive
algorithmic parameters in the
StrategyParametersGrp repeating group starting
with NoStrategyParameters(957). If this mode of
parameter transport is not supported then the
fixTag attribute of all Parameter elements is
required.

Default value: false.

5.16 Strategy Element

Attribute Type Req’d Description

Strategy/@commonIDTag non-negative
int

N Used to denote where to place a common basket ID
when linking together single orders.

Used to denote the tag which must contain a common
ID linking all legs of a multileg order together.
Applicable when multileg orders are delivered via

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 52 of 70

Attribute Type Req’d Description

several NewOrderSingle(35=D) messages.

Strategy/@disclosureDoc anyURI N URL of a disclosure document supplied by the algorithm
provider.

Strategy/@filter string N A reference to the ID of a Filter element defined in the
scope of the Strategies element.

Strategy/@fixMsgType string N Indicates the FIX message to use when transmitting the
order. Values taken from FIX field MsgType(35).

Valid values:

• D (NewOrderSingle)

• E (NewOrderList)

• AB (NewOrderMultiLeg)

• s (NewOrderCross)

Strategy/@imageLocation string N File path or URL of an image file or logo of this
particular strategy.

Strategy/@legsAreSeverable boolean N If true, then an individual leg may be canceled or
replaced. Otherwise, every leg of the order must be
canceled, or every leg must be resent when only one is
replaced.

Applicable when multileg orders are delivered via
several NewOrderSingle(35=D) messages.

Strategy/@legSequenceTag non-negative
int

N Used to denote the tag which will contain the sequence
number of an order of a basket or leg of a multileg
order.

Applicable when multileg orders are delivered via
several NewOrderSingle(35=D) messages. Used in
conjunction with the totalLegsTag attribute.

Strategy/@maxLegs non-negative
int

string
constant
“unbounded”
(strategy
accepts any
number of
legs)

N Use to indicate the maximum number of legs an order
of this type requires. A renderer would use this
information to display the required number of GUI
panels where parameters can be entered and to
properly package a multileg order in one or more FIX
messages.

Strategy/@minLegs non-negative
int

N Use to indicate the minimum number of legs an order
of this type requires. A renderer would use this
information to display the required number of GUI
panels where parameters can be entered and to
properly package a multileg order in one or more FIX
messages.

Strategy/@name StringID Y Unique identifier of a strategy. Strategy names must be
unique per provider.

Strategy/@objective string N An optional classification of a multi-leg order.

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 53 of 70

Attribute Type Req’d Description

Valid values:

• PAIRS

• BUTTERFLY

• BUY-WRITE

• CALENDAR-SPREAD

• PRICE-SPREAD

• DIAGONAL-SPREAD

• SPREAD

• PORTFOLIO

Strategy/@orderSequenceTag non-negative
int

N Used to denote the tag which will contain the sequence
number of a particular order of a basket.

Strategy/@providerID string N Identifies the firm providing the algorithm.

Strategy/@providerSubID string N A further level of firm identification.

Strategy/@requiredNumberOfLegs non-negative
int

N Used to denote number of repeating orders in a
NewOrderList(35=E) message or a basket of
NewOrderSingle(35=D) messages that the algo provider
expects to receive.

Strategy/@sentOrderLink anyURI N Prefix portion of a URL to access the order or draft at
the target, e.g.,
https://xyz.com/algo/dashboard?SenderCompID=OMS.
Append to this the specific SenderCompID string, an
ampersand, “ClOrdID=”, and the specific ClOrdID-string.
Trader hits this full URL to communicate regarding the
order or draft. See additional documentation.

Strategy/@totalLegs non-negative
int

N Used when msgType(35)=AB and denotes the number
of repeating legs.

Strategy/@totalLegsTag non-negative
int

N Used to denote the tag which will contain the total
number of legs of an order.

Applicable when multileg orders are delivered via
several NewOrderSingle(35=D) messages. Used in
conjunction with the legSequenceTag attribute.

Strategy/@totalOrders non-negative
int

N Used to denote number of repeating orders in a
NewOrderList(35=E) message or a basket of
NewOrderSingle(35=D) messages.

Strategy/@totalOrdersTag non-negative
int

N In basket trading, used to denote where to place the
total number of orders of a basket.

Strategy/@uiRep string N The name of the strategy as rendered in the UI. If not
provided then the “name” attribute should be used.
(This is the value rendered on the UI when the user is
presented with a choice of algorithms.)

Strategy/@version string Y Information to facilitate version control.

Strategy/@wireValue string Y The value used to identify the algorithm. The tag
referred to by Strategy/@strategyIdentifierTag will be
set to this value.

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 54 of 70

5.17 StrategyEdit Element

Attribute Type Req’d Description

StrategyEdit/@errorMessage string Y The error message to display when the boolean expression defined
by the Edit element of a StrategyEdit element evaluates to False.

5.18 StrategyPanel Element

Attribute Type Req’d Description

StrategyPanel/@border Border N Recommended border for the panel.

Valid values:

• None

• Line

StrategyPanel/@collapsed boolean N Initial visual state of a panel. Indicates whether a panel is
initially drawn in a collapsed state.

Default value: false.

StrategyPanel/@collapsible boolean N Indicates whether panel can be collapsed.

Default value: false.

(Note that the default value may conflict with the default value
defined in the schema file, fixatdl-layout-1-2.xsd. To avoid
conflict it is recommended that this attribute be treated as a
required attribute.)

StrategyPanel/@color string N The background color of a panel. The value should appear as
the RBG combination separated by commas.

It is recommended that vendors ignore this attribute and rely
on their own color scheme.

StrategyPanel/@fillOrder string N Describes how the grid items are to be arranged.

Valid values:

• COL-MAJOR (default)

• ROW-MAJOR

Applicable when encompassing StrategyPanel orientation is
GRID.

StrategyPanel/@orientation Orientation Y Declares the orientation of the components (parameters or
nested StrategyPanel elements) within a StrategyPanel.

Valid values:

• HORIZONTAL

• VERTICAL

• GRID

StrategyPanel/@numRows non-
negative int

N Number of rows.

Applicable when encompassing StrategyPanel orientation is
GRID.

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 55 of 70

Attribute Type Req’d Description

StrategyPanel/@numCols non-
negative int

N Number of columns.

Applicable when encompassing StrategyPanel orientation is
GRID.

StrategyPanel/@title string N Title that appears in the panel border.

5.19 VendorConfig Element

Attribute Type Req’d Description

VendorConfig/@legParameters boolean N If true, indicates that this strategy definition is tailored for
vendor E/OMSs that support leg-level parameters. If false,
indicates that this strategy is tailored for E/OMSs that do not
support leg-level parameters.

VendorConfig/@tag66Support boolean N If true, indicates that this strategy definition is tailored for
vendor E/OMSs that will deliver an ID linking components of a
multi-leg order (the common ID) in ListID(66). If false, the algo
provider will not expect a common ID in ListID(66).

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 56 of 70

6 Type Definitions

The types of the attribute listed in the previous table are defined here. Many of these datatypes have been leveraged
from the FIXML schema file fixml-datatypes-5-0-SP2.xsd. Some come from the XML Schema namespace
http://www.w3.org/2001/XMLSchema. All others have been defined explicitly within the FIXatdl® schema files.

Type Name Source Description

Amt FIXML Float value typically representing a Price times a Qty.

anyURI XML
Schema

This datatype represents a URI, which includes web page addresses (commonly
called URLs).

boolean XML
Schema

Valid values are “true” and “false”.

Boolean FIXML Character field containing one of two values: ‘Y’ (for True/Yes), ‘N’ (for False/No).

Border FIXatdl® Enumerated type describing the border of a panel. Valid values are:

• None

• Line

char XML
Schema

Char value, can include any alphanumeric character or punctuation except the
delimiter. All char fields are case sensitive (i.e. m != M).

Restricted to the pattern “.{1}”.

Country FIXML String representing a country using ISO 3166 Country code (2 characters) values.

Currency FIXML String representing a currency type using ISO 4217 Currency code (3 characters)
values.

Data FIXML String containing raw data with no format or content restrictions. Data fields are
always immediately preceded by a length field. The length field should specify the
number of bytes of the value of the data field (up to but not including the
terminating SOH). Caution: the value of one of these fields may contain the
delimiter (SOH) character. Note that the value specified for this field should be
followed by the delimiter (SOH) character as all fields are terminated with an SOH.

Not applicable to FIXatdl®.

decimal XML
Schema

The XML Schema built-in datatype representing arbitrary precision decimal
numbers.

double XML
Schema

The XML Schema built-in datatype, double.

Exchange FIXML String representing a market or exchange - ISO 10383 Market Identifier Code (MIC).

int XML
Schema

An integer. May be negative.

language XML
Schema

String identifier for a national language - uses ISO 639-1 standard.

Examples:

• en (English)

• fr (French)

Length FIXML Int representing a length in bytes. Value must be positive.

LocalMktTz FIXatdl® An enumeration type consisting of the timezone database (or Olson database)
codes for various timezones around the world. For example: “Europe/Zurich”. Note

http://www.w3.org/2001/XMLSchema

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 57 of 70

Type Name Source Description

that these codes do not provide GMT offset or daylight savings information.

MonthYear FIXML String field representing month of a year. An optional day of the month can be
appended or an optional week code. Valid formats: YYYYMM YYYYMMDD
YYYYMMWW YYYY = 0000-9999, MM = 01-12, DD = 01-31, WW = w1, w2, w3, w4,
w5.

MultipleCharValue FIXML String field containing one or more space delimited char values.

MultipleStringValue FIXML String field containing one or more space delimited string values.

Orientation FIXatdl® Enumerated type describing the orientation of a group of GUI components or
controls. Valid values: “HORIZONTAL”, “VERTICAL”, “GRID”.

Percentage FIXML Float value representing a percentage (e.g. .05 represents 5% and .9525 represents
95.25%). Note the number of decimal places may vary.

positiveInteger
(posint)

XML
Schema

An integer greater than or equal to 0.

Price FIXML Float value representing a price. Note the number of decimal places may vary. For
certain asset classes, prices may be negative values. For example, prices for options
strategies can be negative under certain market conditions.

PriceOffset FIXML Float value representing a price offset, which can be mathematically added to a
“Price”. Note the number of decimal places may vary and some fields such as
LastForwardPoints(195) may be negative.

Qty FIXML float value capable of storing either a whole number (no decimal places) of “shares”
(securities denominated in whole units) or a decimal value containing decimal
places for non-share quantity asset classes (securities denominated in fractional
units).

SeqNum FIXML Int representing a message sequence number. Value must be positive.

string XML
Schema

The string datatype represents character strings in XML.

StringID FIXatdl® String with pattern restriction “[A-Za-z][A-Za-z0-9_]{0,255}”.

time XML
Schema

Time specified in the format “hh:mm[:ss]” or “hh:mm[:ss]{+,-}hh:mm”. In the latter
format the offset from UTC is provided.

date XML
Schema

The date data type is used to specify a date. The date is specified in the following
form “YYYY-MM-DD” where:

• YYYY indicates the year

• MM indicates the month

• DD indicates the day

TZTimestamp FIXML String field representing a time/date combination representing local time with an
offset to UTC to allow identification of local time and timezone offset of that time.
The representation is based on ISO 8601.

Format is YYYYMMDD-HH:MM:SS[Z | [+ | - hh[:mm]]] where YYYY = 0000 to 9999,
MM = 01-12, DD = 01-31 HH = 00-23 hours, MM = 00-59 minutes, SS = 00-59
seconds, hh = 01-12 offset hours, mm = 00-59 offset minutes

Example: 20060901-07:39Z is 07:39 UTC on 1st of September 2006

Example: 20060901-02:39-05 is five hours behind UTC, thus Eastern Time on 1st of
September 2006

Example: 20060901-15:39+08 is eight hours ahead of UTC, Hong Kong/Singapore

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 58 of 70

Type Name Source Description

time on 1st of September 2006

Example: 20060901-13:09+05:30 is 5.5 hours ahead of UTC, India time on 1st of
September 2006.

TZTimeOnly FIXML String field representing the time represented based on ISO 8601. This is the time
with a UTC offset to allow identification of local time and timezone of that time.

Format is HH:MM[:SS][Z | [+ | - hh[:mm]]] where HH = 00-23 hours, MM = 00-59
minutes, SS = 00-59 seconds, hh = 01-12 offset hours, mm = 00-59 offset minutes.

Example: 07:39Z is 07:39 UTC

Example: 02:39-05 is five hours behind UTC, thus Eastern Time

Example: 15:39+08 is eight hours ahead of UTC, Hong Kong/Singapore time

Example: 13:09+05:30 is 5.5 hours ahead of UTC, India time.

Tenor FIXML Pattern used to allow the expression of FX standard tenors in addition to the base
valid enumerations defined for the field that uses this pattern data type. This
pattern data type is defined as follows:

Dx = tenor expression for “days”, e.g. “D5”, where “x” is any integer > 0

Mx = tenor expression for “months”, e.g. “M3”, where “x” is any integer > 0

Wx = tenor expression for “weeks”, e.g. “W13”, where “x” is any integer > 0

Yx = tenor expression for “years”, e.g. “Y1”, where “x” is any integer > 0

UTCDateOnly FIXML String Date represented in UTC (Universal Time Coordinated, also known as “GMT”)
in YYYYMMDD format. This special-purpose field is paired with UTCTimeOnly to
form a proper UTCTimestamp for bandwidth-sensitive messages.

Valid values:

YYYY = 0000-9999, MM = 01-12, DD = 01-31.

UTCTimeOnly FIXML String Time-only represented in UTC (Universal Time Coordinated, also known as
“GMT”) in either HH:MM:SS (whole seconds) or HH:MM:SS.sss (milliseconds)
format, colons, and period required. This special-purpose field is paired with
UTCDateOnly to form a proper UTCTimestamp for bandwidth-sensitive messages.

Valid values:

HH = 00-23, MM = 00-60 (60 only if UTC leap second), SS = 00-59. (without
milliseconds)

HH = 00-23, MM = 00-59, SS = 00-60 (60 only if UTC leap second), sss=000-999
(indicating milliseconds).

UTCTimestamp FIXML String representing Time/date combination represented in UTC (Universal Time
Coordinated, also known as “GMT”) in either YYYYMMDD-HH:MM:SS (whole
seconds) or YYYYMMDD-HH:MM:SS.sss (milliseconds) format, colons, dash, and
period required.

Valid values:

YYYY = 0000-9999, MM = 01-12, DD = 01-31, HH = 00-23, MM = 00-59, SS = 00-60
(60 only if UTC leap second) (without milliseconds).

YYYY = 0000-9999, MM = 01-12, DD = 01-31, HH = 00-23, MM = 00-59, SS = 00-60
(60 only if UTC leap second), sss=000-999 (indicating milliseconds).

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 59 of 70

Type Name Source Description

Leap Seconds: Note that UTC includes corrections for leap seconds, which are
inserted to account for slowing of the rotation of the earth. Leap second insertion is
declared by the International Earth Rotation Service (IERS) and has, since 1972, only
occurred on the night of Dec. 31 or Jun 30. The IERS considers March 31 and
September 30 as secondary dates for leap second insertion, but has never utilized
these dates. During a leap second insertion, a UTCTimestamp field may read
“19981231-23:59:59”, “19981231-23:59:60”, “19990101-00:00:00” (see
http://tycho.usno.navy.mil/leapsec.html.)

http://tycho.usno.navy.mil/leapsec.html

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 60 of 70

7 Abstract Element Extensions

There are two elements in the schema that are defined as abstract. For example, they cannot be included in a FIXatdl®
document without being extended by another element via the XML Schema extension element. All instances of these
elements must indicate a derived type that is not abstract via use of the attribute xsi:type defined in the
namespace http://www.w3.org/2001/XMLSchema-instance.

7.1 Parameter Element Extension

Custom parameters received by an algorithmic order recipient must be of a type known to the recipient. For example,
if the recipient is expecting a floating point number in a particular tag then the order sender must make certain that
an actual floating point number goes in that tag. FIXatdl® requires that any custom parameter to an algorithm must be
of a type defined by the FIX Protocol. So the schema provides a set of complex types that are used to extend the
Parameter element. These complex types directly correspond to the enumeration type description of
StrategyParameterType(959) in the FIX Latest specification.

It is required that each Parameter element be extended by setting the attribute xsi:type equal to the name of one
of the FIXatdl® parameter extension types. An abstract Parameter element has the following attributes (which are
described in the section Attribute Definitions):

• name

• fixTag

• use

• mutableOnCxlRpl

• revertOnCxlRpl

• definedByFIX

• filter

• scope

• xsi:type

When the Parameter element is extended it gains several more attributes depending on the element to which it is
extended.

The types of these attributes are also dependent on the extended element and may vary from one Parameter
element to another.

The following table presents the xsi:type names, the expected data type of the wire-value and the extended
attributes that apply only to the specific parameter extension type.

Parameter xsi:type Corresponding FIX Types Attribute Name1 Attribute Type2

Amt_t Amt minValue
maxValue
constValue

decimal
decimal
decimal

Boolean_t Boolean trueWireValue3
falseWireValue4
constValue

string
string
boolean

Char_t char constValue char

Country_t Country constValue Country

1 Extended attributes specific to xsi:type
2 Extended attributes specific to xsi:type
3 Deprecated
4 Deprecated

http://www.w3.org/2001/XMLSchema-instance
https://www.fixtrading.org/online-specification/

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 61 of 70

Parameter xsi:type Corresponding FIX Types Attribute Name1 Attribute Type2

Currency_t Currency constValue string

Data_t data minLength
maxLength
constValue

Length
Length
Data

Exchange_t Exchange constValue Exchange

Float_t float minValue
maxValue
constValue
precision

decimal
decimal
decimal
non-negative int

Int_t int minValue
maxValue
constValue

int
int
int

Language_t Language constValue language

Length_t Length constValue positiveInteger

LocalMktDate_t LocalMktDate minValue
maxValue
constValue

LocalMktDate
LocalMktDate
LocalMktDate

MonthYear_t month-year minValue
maxValue
constValue

MonthYear
MonthYear
MonthYear

MultipleCharValue_t MultipleCharValue minLength
maxLength
constValue
invertOnWire

Length
Length
MultipleCharValue
boolean

MultipleStringValue_t MultipleStringValue minLength
maxLength
constValue
invertOnWire

Length
Length
MultipleStringValue
boolean

NumInGroup_t NumInGroup constValue positiveInteger

Percentage_t Percentage minValue
maxValue
constValue
multiplyBy100

Percentage
Percentage
Percentage
boolean

Price_t Price minValue
maxValue
constValue
precision

Price
Price
Price
non-negative int

PriceOffset_t PriceOffset minValue
maxValue
constValue
precision

PriceOffset
PriceOffset
PriceOffset
non-negative int

Qty_t Qty minValue
maxValue
constValue
precision

Qty
Qty
Qty
non-negative int

SeqNum_t SeqNum constValue positiveInteger

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 62 of 70

Parameter xsi:type Corresponding FIX Types Attribute Name1 Attribute Type2

String_t string minLength
maxLength
constValue

Length
Length
string

TagNum_t int constValue positiveInteger

Tenor_t Tenor constValue Tenor

UTCDateOnly_t UTCDateOnly minValue
maxValue
constValue

UTCDateOnly
UTCDateOnly
UTCDateOnly

UTCTimeOnly_t UTCTimeOnly minValue
maxValue
constValue

time
time
time

UTCTimestamp_t UTCTimestamp minValue
maxValue
constValue
localMktTz

time
time
time
LocalMktTz

TZTimestamp_t TZTimestamp minValue
maxValue
constValue

time
time
time

TZTimeOnly_t TZTimeOnly minValue
maxValue
constValue

TZTimeOnly
TZTimeOnly
TZTimeOnly

For example, in the following code snippet an algorithmic parameter, “MktOnCloseFlag”, is defined as being a
“Boolean_t” type.

<Parameter name="MktOnCloseFlag" xsi:type="Boolean_t" fixTag="28001" use="required"
trueWireValue="T" falseWireValue="F"/>

Notice that by setting xsi:type of this parameter to “Boolean_t”, the attributes trueWireValue and
falseWireValue, which are members of the derived element and accept standard XML string values, can now be
used.

[Please note that the previous example shows two attributes which have been deprecated,
Parameter/@trueWireValue and Parameter/@falseWireValue. The intention was to illustrate how extended
elements are used.]

In this next snippet a quantity parameter is defined.

<Parameter name="CrossQty" xsi:type="Qty_t" fixTag="28002" use="required" minValue="100"/>

By setting xsi:type to “Qty_t”, a value for minValue can be provided.

7.2 Control Element Extension

As with extensions to the Parameter element, FIXatdl® provides a set of elements that are derived from the
Control element. Each of these elements inherits the attributes of the Control element. They also have their own
distinct attributes.

An abstract Control element has the following attributes (which are described in the section Attribute Definitions):

• ID

• parameterRef

• label

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 63 of 70

• initFixField

• initPolicy

• tooltip

• disableForTemplate

• filter

• xsi:type

When the Control element is extended it gains several more attributes depending on the element to which it is
extended.

The types of these attributes are also dependent on the extended element and may vary from one Control element
to another.

The following types are used to extend the Control element:

Control xsi:type Description of desired control Attribute Name5 Attribute Type6

Clock_t Clock with hours, minutes, seconds and
AM/PM setting.

Depending on the parameter type, this
control may optionally also display a date
selector.

initValue

initValueMode

localMktTz

enablingControlType

disablingControlType

disablingControlLabel

displayableDate

displayableTimeZone

editableTimeZone

time

int

localMktTz_t

string

string

string

string

boolean

boolean

TextField_t Standard text field. initValue string

SingleSelectList_t Affords the user the ability to select one
item from a list.

initValue string

MultiSelectList_t Affords the user the ability to select many
items from a list. Values extracted from this
type of control are expected to be
transmitted using a MultipleStringValue or
MultipleCharValue FIX type.

initValue MultipleStringValue

Slider_t Draggable slider with labels that map to
values.

initValue

increment

incrementPolicy

string

double

string

CheckBox_t Standard check box – initialized to checked
or unchecked.

initValue

checkedEnumRef

uncheckedEnumRef

boolean

string

string

CheckBoxList_t A list of check boxes where multiple
selections can be made. Values extracted
from this type of control are expected to be

initValue MultipleStringValue

5 Attributes specific to xsi:type.
6 Attributes specific to xsi:type.

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 64 of 70

Control xsi:type Description of desired control Attribute Name5 Attribute Type6

transmitted using a MultipleStringValue or
MultipleCharValue FIX type.

orientation Orientation

SingleSpinner_t A numeric field that has arrows to
increment and decrement

initValue

increment

incrementPolicy

double

double

string

DoubleSpinner_t A numeric field that has two sets of arrows
to increment and decrement by different
values (say for pennies and dollars). When
pressed, the right-most pair of arrows will
increment (or decrement) the value of the
control by the value of outerIncrement.
Pressing the other pair of arrows will cause
the value to be incremented (or
decremented) by the value of
innerIncrement.

initValue

innerIncrement

innerIncrementPolicy

outerIncrement

outerIncrementPolicy

double

double

string

double

string

DropDownList_t More specific derivation of a
SingleSelectList. E.g., a combo box.

initValue string

EditableDropDownList_t More specific derivation of a
SingleSelectList. E.g., an editable combo
box.

initValue string

RadioButton_t Standard radio button, but with no
associated group.

initValue

radioGroup

checkedEnumRef

uncheckedEnumRef

boolean

string

string

string

RadioButtonList_t More specific derivation of a
SingleSelectList. Several items are presented
with an associated radio button where the
user can select only one of them.

initValue

orientation

string

Orientation

Label_t Plain text.

Note that the label control’s text may be
updated through the execution of a
StateRule.

initValue string

For example, in the following code snippet a control, “StartTimeCntl”, is defined as being a “Clock_t”. An initial value
of “09:30” has been specified.

<Control ID="StartTimeCntl" xsi:type="lay:Clock_t" label="Start Time" initValue="09:30"
localMktTz="America/New_York" parameterRef="StartTime"/>

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 65 of 70

8 Dependencies and Structural Constraints beyond XML Schema

While W3C XML Schema is useful for describing the structure of an XML-based language, it still has its limitations. For
example, it only allows the specification of whether attributes are required or optional. Furthermore, there is no way
to specify more complex constraints between attributes or between attributes or elements.

With this in mind the following table presents further constraints to which XML document instances must conform if
they are to be FIXatdl® compliant.

ID Affected
Elements

Affected Attributes Description

1 Edit logicOperator,
operator

Within an Edit element, the attributes operator and logicOperator are
mutually exclusive.

2 Edit field2, value Within an Edit element, the attributes field2 and value are mutually
exclusive.

3 StrategyPanel A StrategyPanel element cannot have as child elements both Control
elements and StrategyPanel elements.

4 Edit field, field2 Within an Edit element the attributes field and field2 must refer to either
a pre-declared parameter name or a standard FIX field name (taken from
the FIX specification) pre-pended with the string “FIX_”.

5 Edit value Within an Edit element, the type of the value attribute must safely
match with the type of parameter specified by the field attribute.

6 Edit logicOperator,
operator

If an Edit element is a child of another Edit element then the parent Edit
element must have its logicOperator attribute defined and its operator
attribute undefined.

7 Edit field1, field2 When a comparison is made between two operands, the values of the
operands must either be of the same type or be able to be converted in
such a way so that the resulting converted types are the same.

8 Control parameterRef If Control/@parameterRef is defined it must be equal to the name
attribute of one of the defined Parameter elements.

9 EnumPair

ListItem

enumID If a Control is linked to a Parameter via use of Control/@parameterRef,
and the Control contains ListItem elements, then the Parameter must
contain EnumPair elements. Furthermore, each of the Control’s
ListItem/@enumID values must match one and only one of the
Parameter element’s EnumPair/@enumID values.

10 Control checkedEnumRef

uncheckedEnumRef

If values for Control/@checkedEnumRef or
Control/@uncheckedEnumRef are provided then
Control/@parameterRef must also be provided. Furthermore, the values
of Control/@checkedEnumRef and Control/@uncheckedEnumRef each
must be equal to one of the EnumPair/@enumID values of the
Parameter element referred to by Control/@parameterRef.

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 66 of 70

9 A Sample FIXatdl® Document

The following listing shows a FIXatdl® instance document describing one strategy with six parameters. The associated
controls to be rendered are aligned horizontally within two panels which are, in turn, are vertically aligned. Three
validation rules are provided.

<Strategies
 xmlns="http://www.fixprotocol.org/FIXatdl-1-2/Core"
 xmlns:val="http://www.fixprotocol.org/FIXatdl-1-2/Validation"
 xmlns:lay="http://www.fixprotocol.org/FIXatdl-1-2/Layout"
 xmlns:flow="http://www.fixprotocol.org/FIXatdl-1-2/Flow"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.fixprotocol.org/FIXatdl-1-2/Core fixatdl-core-1-2.xsd"
 strategyIdentifierTag="27620"
 versionIdentifierTag="27621">

 <Strategy name="Tazer1" uiRep="Tazer" wireValue="Tazer" version="1" fixMsgType="D"
 providerID="ABC">

 <!--

 Declare the algorithm to be applicable in The U.S., Canada and the UK.

 -->

 <Regions>
 <Region name="TheAmericas" inclusion="Include">
 <Country CountryCode="US" inclusion="Include"/>
 <Country CountryCode="CA" inclusion="Include"/>
 </Region>
 <Region name="EuropeMiddleEastAfrica" inclusion="Include">
 <Country CountryCode="UK" inclusion="Include"/>
 </Region>
 </Regions>

 <!--

 Declare the markets where order may be executed.

 -->

 <Markets>
 <Market MICCode="BATS" inclusion="Include"/>
 <Market MICCode="NYSE" inclusion="Include"/>
 <Market MICCode="XTSE" inclusion="Include"/>
 <Market MICCode="LSE" inclusion="Include"/>
 </Markets>

 <!--

 This algorithm will be applied to equity common stock.

 -->

 <SecurityTypes>
 <SecurityType name="CS" inclusion="Include"/>
 </SecurityTypes>

 <!--

 Parameter declarations

 Five parameters are declared here. The order recipient may reject

 orders with: EndTime(7603) values greater than 4pm New York time;

 SweepDistribution(7640) values other than "U" or "G"; Variance(7641)

 values outside the range [0.01, 0.50]; and DisplayQty(7645)

 values less than 0.

 -->

 <Parameter name="StartTime" xsi:type="UTCTimestamp_t" fixTag="27602" use="required"/>
 <Parameter name="EndTime" xsi:type="UTCTimestamp_t" fixTag="27603" use="required"
 maxValue="16:00:00" localMktTz="America/New_York "/>
 <Parameter name="DisplayQty" xsi:type="Int_t" fixTag="27645" use="optional"
 minValue="0"/>
 <Parameter name="SweepDistribution" xsi:type="Char_t" fixTag="27640" use="required">
 <EnumPair enumID="e_Uniform" wireValue="U"/>

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 67 of 70

 <EnumPair enumID="e_Gaussian" wireValue="G"/>
 </Parameter>
 <Parameter name="Variance" xsi:type="Float_t" fixTag="27641" use="optional"
 minValue="0.01" maxValue="0.50"/>
 <Parameter name="AllowDarkPoolExec" xsi:type="Char_t" fixTag="27642" use="required">
 <EnumPair enumID="e_True" wireValue="T"/>
 <EnumPair enumID="e_False" wireValue="F"/>
 </Parameter>

 <!--

 Description and Layout of GUI controls

 -->

 <lay:StrategyLayout>
 <lay:StrategyPanel orientation="VERTICAL">
 <lay:StrategyPanel orientation="HORIZONTAL">
 <!--

 The StartTimeClock control will be initialized to 9:30am (New

 York time). If it is past 9:30am when the control is rendered,

 then it will be initialized with the current time.

 Note that the user will see the 9:30am New York time rendered

 according to his/her environment's local timezone setup.

 -->

 <lay:Control xsi:type="lay:Clock_t" ID="StartTimeClock" label="Start Time"
 parameterRef="StartTime" initValue="09:30:00" localMktTz="America/New_York"
 initValueMode="1"/>

 <!--

 The EndTimeClock control is not initialized.

 -->

 <lay:Control xsi:type="lay:Clock_t" ID="EndTimeClock" label="End Time"
 parameterRef="EndTime"/>

 <!--

 The next control is not bound to any parameter. It is intended to

 direct the behavior of the DisplayQty control. It presents 3

 options in a drop-down list.

 -->

 <lay:Control ID="DQHandling" xsi:type="lay:DropDownList_t"
 label="Display Handling">
 <lay:ListItem enumID="choice1" uiRep="Send nothing"/>
 <lay:ListItem enumID="choice2" uiRep="Send 0"/>
 <lay:ListItem enumID="choice3" uiRep="Send what user enters"/>
 </lay:Control>

 <!--

 The DisplayQty control is bound to the DisplayQty parameter. The

 control is un-initialized when it is first rendered. Its

 subsequent behavior is directed by DQHandling control. When

 DQHandling's choice1 is selected DisplayQty will revert to an

 un-initialized state and become disabled. When DQHandling's

 choice2 is selected, DisplayQty's value will be set to 0 and

 it will become disabled. When DQHandling's choice3 is selected,

 DisplayQty will be enabled and will accept user input.

 -->

 <lay:Control xsi:type="lay:TextField_t" ID="DisplayQty" label="Display Qty"
 parameterRef="DisplayQty">
 <flow:StateRule enabled="true">
 <val:Edit field="DQHandling" operator="EQ" value="choice3"/>
 </flow:StateRule>
 <flow:StateRule value="{NULL}">
 <val:Edit field="DQHandling" operator="EQ" value="choice1"/>
 </flow:StateRule>
 <flow:StateRule value="0">

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 68 of 70

 <val:Edit field="DQHandling" operator="EQ" value="choice2"/>
 </flow:StateRule>
 </lay:Control>
 </lay:StrategyPanel>
 <lay:StrategyPanel orientation="HORIZONTAL">
 <!--

 The SweepDist control will present the 2 options corresponding to

 the enumPairs of the SweepDistribution parameter.

 -->

 <lay:Control ID="SweepDist" xsi:type="lay:DropDownList_t"
 label="Sweep Distribution"
 parameterRef="SweepDistribution" initValue="Uniform">
 <lay:ListItem enumID="e_Uniform" uiRep="Uniform"/>
 <lay:ListItem enumID="e_Gaussian" uiRep="Gaussian"/>
 </lay:Control>
 <!--

 The Variance control is enabled only when SweepDist's e_Gaussian

 item is selected.

 -->

 <lay:Control xsi:type="lay:SingleSpinner_t" ID="Variance" label="Variance"
 parameterRef="Variance">
 <flow:StateRule enabled="true">
 <val:Edit field="SweepDist" operator="EQ" value="e_Gaussian"/>
 </flow:StateRule>
 </lay:Control>
 </lay:StrategyPanel>
 <lay:StrategyPanel orientation="HORIZONTAL">
 <lay:Control xsi:type="lay:CheckBox_t" ID="DPOption"
 label="Allow Dark Pool Execution" parameterRef="AllowDarkPoolExec"
 checkedEnumRef="e_True" uncheckedEnumRef="e_False">
 </lay:Control>
 </lay:StrategyPanel>
 </lay:StrategyPanel>
 </lay:StrategyLayout>

 <!--

 Validation Section

 Note that the attribute, field, always refers to a Parameter name and

 not a Control ID. Also note that short-circuit evaluation is fully

 exploited.

 -->

 <val:StrategyEdit errorMessage="End Time should be later than Start Time">
 <val:Edit field="EndTime" operator="GT" field2="StartTime"/>
 </val:StrategyEdit>

 <val:StrategyEdit errorMessage="Variance is required when Sweep Distribution is
 Gaussian.">
 <val:Edit logicOperator="OR">
 <val:Edit field="SweepDistribution" operator="NE" value="G"/>
 <val:Edit logicOperator="AND">
 <val:Edit field="SweepDistribution" operator="EQ" value="G"/>
 <val:Edit field="Variance" operator="EX"/>
 </val:Edit>
 </val:Edit>
 </val:StrategyEdit>

 <val:StrategyEdit errorMessage="Variance must be between 0 and 2.0">
 <val:Edit logicOperator="OR">
 <val:Edit field="SweepDistribution" operator="NE" value="G"/>
 <val:Edit logicOperator="AND">
 <val:Edit field="SweepDistribution" operator="EQ" value="G"/>
 <val:Edit field="Variance" operator="EX"/>
 <val:Edit field="Variance" operator="GT" value="0.0"/>
 <val:Edit field="Variance" operator="LT" value="2.0"/>
 </val:Edit>

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 69 of 70

 </val:Edit>
 </val:StrategyEdit>
 </Strategy>
</Strategies>

FIX TECHNICAL STANDARD – FIX Algorithmic Trading Definition Language (FIXatdl®) May 2021

© Copyright, 2010-2021, FIX Protocol, Limited Page 70 of 70

Appendix 1 - LocalMktTz Type
The valid values of attributes of the type LocalMktTz can be found at IANA. In the FIXatdl® schema a simple type,
“LocalMktTz_t”, has been defined as a string which is restricted to the zone names of the TZ environment variable.

https://www.iana.org/time-zones

	1 Introduction
	1.1 Audience

	2 FIXatdl® Schema Files
	3 Key Concepts
	3.1 Element Hierarchy
	3.2 Parameter Description
	3.3 Validation Rules
	3.4 GUI Layout Description
	3.4.1 Enable/Disable Clock Controls
	3.4.2 Duration as an Alternative to Expiration Time
	3.4.3 Grid Layout for Strategy Panels
	3.4.3.1 Error Conditions

	3.5 Flow Control Rules
	3.6 Parameter-to-Control Bindings
	3.7 Transport of Strategy Parameters
	3.8 Support for Basket, List and Multileg Order Types
	3.8.1 Order Delivery
	3.8.2 Leg Count
	3.8.3 Linking and Sequencing of Single Orders
	3.8.4 Parameter Scope
	3.8.5 Cancel/Modify of Legs
	3.8.6 Validation of Leg Parameter Values
	3.8.7 Display/Layout of Leg Parameters
	3.8.8 GUI State Rule for Leg Panel Controls
	3.8.9 Vendor Configurations

	3.9 Additional Global Definitions
	3.10 OMS Hooks
	3.10.1 Validation Rules with References to Standard FIX Fields
	3.10.2 Filtering according to OMS Environment Values

	4 Element Definitions
	5 Attribute Definitions of Elements
	5.1 Client Element
	5.2 Control Element
	5.3 Country Element
	5.4 Edit Element
	5.5 EnumPair Element
	5.6 Filter Element
	5.7 FixMsg Element
	5.8 ListItem Element
	5.9 Market Element
	5.10 Parameter Element
	5.11 Region Element
	5.12 RepeatingGroup Element
	5.13 SecurityType Element
	5.14 StateRule Element
	5.15 Strategies Element
	5.16 Strategy Element
	5.17 StrategyEdit Element
	5.18 StrategyPanel Element
	5.19 VendorConfig Element

	6 Type Definitions
	7 Abstract Element Extensions
	7.1 Parameter Element Extension
	7.2 Control Element Extension

	8 Dependencies and Structural Constraints beyond XML Schema
	9 A Sample FIXatdl® Document
	Appendix 1 - LocalMktTz Type

