

© Copyright, 2011-2020, FIX Protocol, Limited

FIX TagValue Encoding
Technical Specification

Version 1.0 – Technical Standard – June 2020

THIS DOCUMENT IS THE FINAL VERSION OF A FIX TECHNICAL STANDARD. THIS VERSION HAS BEEN
APPROVED BY THE GLOBAL TECHNICAL COMMITTEE AS THE FINAL STEP IN CREATING A NEW FIX
TECHNICAL STANDARD OR A NEW VERSION OF AN EXISTING FIX TECHNICAL STANDARD. POTENTIAL
ADOPTERS ARE STRONGLY ENCOURAGED TO USE ONLY THE FINAL VERSION. EXISTING ADOPTERS ARE
STRONGLY ENCOURAGED TO UPGRADE TO THE FINAL VERSION.

FIX TECHNICAL STANDARD June 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 2 of 25

Table of Contents

1 Scope ... 5

2 Normative references ... 6

3 Terms and definitions ... 7

3.1 General terms and definitions.. 7
3.1.1 field presence... 7
3.1.2 component presence ... 7
3.1.3 repeating group instance ... 7
3.1.4 character digit .. 7

4 FIX tagvalue message syntax ... 8

4.1 Character encoding .. 8

4.2 Field syntax ... 8
4.2.1 Tag (field identifier) ... 8
4.2.2 Tag delimiter .. 8
4.2.3 Field value .. 8
4.2.4 Field delimiter .. 8
4.2.5 Well-formed field ... 8
4.2.6 Example of a FIX tag=value message ... 8

4.3 Message structure .. 9
4.3.1 Message type ... 9
4.3.2 Field presence .. 9
4.3.3 Field sequence ... 9
4.3.4 Message delimiter ... 9
4.3.5 Components ... 9
4.3.6 Groups and repeating groups .. 10

4.3.6.1 Repeating group name .. 10
4.3.6.2 NumInGroup field .. 10
4.3.6.3 Field sequence within a repeating group .. 10
4.3.6.4 Field presence within a repeating group ... 10
4.3.6.5 Nested repeating groups ... 10
4.3.6.6 Nested repeating group example .. 11

4.3.7 Encoded data fields .. 11
4.3.7.1 MessageEncoding field .. 11
4.3.7.2 Examples of using encoded data fields for Japanese language support 11
4.3.7.3 Precaution when using multibyte encodings .. 12

5 Standard header and trailer .. 13

5.1 Standard header ... 13
5.1.1 Body length calculation ... 13
5.1.2 Standard header definition .. 13

5.2 Standard trailer .. 13
5.2.1 Standard trailer definition ... 13
5.2.2 Checksum ... 14

6 FIX tagvalue datatypes ... 15

6.1 Value space... 15

6.2 Lexical space ... 15
6.2.1 Character encoding .. 15
6.2.2 Lexical encoding for FIX datatypes .. 15
6.2.3 XML data .. 22

7 Code sets ... 23

FIX TECHNICAL STANDARD June 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 3 of 25

7.1 Underlying value type .. 23
7.1.1 Internal code sets... 23
7.1.2 External code sets .. 23

Annex A (informative) Checksum calculation ... 24

Bibliography .. 25

FIX TECHNICAL STANDARD June 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 4 of 25

DISCLAIMER
THE INFORMATION CONTAINED HEREIN AND THE FINANCIAL INFORMATION EXCHANGE PROTOCOL (COLLECTIVELY,
THE “FIX PROTOCOL”) ARE PROVIDED “AS IS” AND NO PERSON OR ENTITY ASSOCIATED WITH THE FIX PROTOCOL
MAKES ANY REPRESENTATION OR WARRANTY, EXPRESS OR IMPLIED, AS TO THE FIX PROTOCOL (OR THE RESULTS TO
BE OBTAINED BY THE USE THEREOF) OR ANY OTHER MATTER AND EACH SUCH PERSON AND ENTITY SPECIFICALLY
DISCLAIMS ANY WARRANTY OF ORIGINALITY, ACCURACY, COMPLETENESS, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. SUCH PERSONS AND ENTITIES DO NOT WARRANT THAT THE FIX PROTOCOL WILL CONFORM
TO ANY DESCRIPTION THEREOF OR BE FREE OF ERRORS. THE ENTIRE RISK OF ANY USE OF THE FIX PROTOCOL IS
ASSUMED BY THE USER.

NO PERSON OR ENTITY ASSOCIATED WITH THE FIX PROTOCOL SHALL HAVE ANY LIABILITY FOR DAMAGES OF ANY KIND
ARISING IN ANY MANNER OUT OF OR IN CONNECTION WITH ANY USER’S USE OF (OR ANY INABILITY TO USE) THE FIX
PROTOCOL, WHETHER DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL (INCLUDING, WITHOUT
LIMITATION, LOSS OF DATA, LOSS OF USE, CLAIMS OF THIRD PARTIES OR LOST PROFITS OR REVENUES OR OTHER
ECONOMIC LOSS), WHETHER IN TORT (INCLUDING NEGLIGENCE AND STRICT LIABILITY), CONTRACT OR OTHERWISE,
WHETHER OR NOT ANY SUCH PERSON OR ENTITY HAS BEEN ADVISED OF, OR OTHERWISE MIGHT HAVE ANTICIPATED
THE POSSIBILITY OF, SUCH DAMAGES.

DRAFT OR NOT RATIFIED PROPOSALS (REFER TO PROPOSAL STATUS AND/OR SUBMISSION STATUS ON COVER PAGE)
ARE PROVIDED “AS IS” TO INTERESTED PARTIES FOR DISCUSSION ONLY. PARTIES THAT CHOOSE TO IMPLEMENT THIS
DRAFT PROPOSAL DO SO AT THEIR OWN RISK. IT IS A DRAFT DOCUMENT AND MAY BE UPDATED, REPLACED, OR
MADE OBSOLETE BY OTHER DOCUMENTS AT ANY TIME. THE FIX GLOBAL TECHNICAL COMMITTEE WILL NOT ALLOW
EARLY IMPLEMENTATION TO CONSTRAIN ITS ABILITY TO MAKE CHANGES TO THIS SPECIFICATION PRIOR TO FINAL
RELEASE. IT IS INAPPROPRIATE TO USE FIX WORKING DRAFTS AS REFERENCE MATERIAL OR TO CITE THEM AS OTHER
THAN “WORKS IN PROGRESS”. THE FIX GLOBAL TECHNICAL COMMITTEE WILL ISSUE, UPON COMPLETION OF REVIEW
AND RATIFICATION, AN OFFICIAL STATUS (“APPROVED”) OF/FOR THE PROPOSAL AND A RELEASE NUMBER.

No proprietary or ownership interest of any kind is granted with respect to the FIX Protocol (or any rights therein),
except as expressly set out in FIX Protocol Limited’s Copyright and Acceptable Use Policy.

© Copyright 2003-2020 FIX Protocol Limited, all rights reserved

FIX Technical Standard Specifications by FIX Protocol Ltd. are licensed under a Creative Commons Attribution-
NoDerivatives 4.0 International License. Based on a work at https://github.com/FIXTradingCommunity/.

https://www.fixtradingcommunity.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://github.com/FIXTradingCommunity/

FIX TECHNICAL STANDARD June 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 5 of 25

1 Scope

The Financial Information eXchange tagvalue encoding is the original encoding used for FIX messages. The tagvalue
encoding is the encoding used by the FIX session layer; it corresponds to the Presentation Layer of the ISO Open
Systems Interconnection model. The encoding uses an integer number known as a tag to identify the field, followed
by the “=” character (hexadecimal 0x3D), then the value of that field encoded in the ISO 8859-1 character set. Each
tagvalue pair is separated by the Start of Heading control character <SOH> (hexadecimal value 0x01), which is defined
by ISO 6429:1992. The tagvalue encoding also supports the encoding of binary and multibyte character data in certain
encoded data fields that are preceded by a Length field.

FIX TECHNICAL STANDARD June 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 6 of 25

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references, the
latest edition of the referenced document (including any amendments) applies.

— ISO/IEC 8859-1:1998 Information technology -- 8-bit single-byte coded graphic character sets -- Part 1: Latin
alphabet No. 1

— ISO/IEC 6429:1992 Information technology -- Control functions for coded character sets

— ISO/IEC 11404:2007 Information technology -- General-Purpose Datatypes (GPD)

— Extensible Markup Language (XML) 1.0 (Fifth Edition) W3C Recommendation 26 November 2008

— IETF RFC 2119 -- Key words for use in RFCs to Indicate Requirement Levels March 1997

— IETF RFC 2978 -- IANA Charset Registration Procedures October 2000

FIX TECHNICAL STANDARD June 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 7 of 25

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC 11404:2007 Information technology --
General-Purpose Datatypes (GPD) and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— IEC Electropedia: available at http://www.electropedia.org/

— ISO Online browsing platform: available at https://www.iso.org/obp

3.1 General terms and definitions

3.1.1 field presence

The existence or use of a field within a message. FIX specifications and rules of engagement based on FIX should refer
to a field as being present in a message.

3.1.2 component presence

The existence or use of a component within a message. FIX specifications and rules of engagement based on FIX
should refer to a component as being present in a message.

3.1.3 repeating group instance

A specific record, as defined in ISO/IEC 11404:2007, of the group within a repeating group.

3.1.4 character digit

The character representation of a number, 0 through 9, in the character set used for encoding. Characters 0x30
through 0x39 in the Latin alphabet No. 1 character set (ISO/IEC 8859-1:1998).

http://www.electropedia.org/
https://www.iso.org/obp

FIX TECHNICAL STANDARD June 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 8 of 25

4 FIX tagvalue message syntax

4.1 Character encoding

With the exception of datatype data, tagvalue encoding uses a single-byte character set. By default, the encoding is
ISO/IEC 8859-1:1998 Latin alphabet No. 1.

By counterparty agreement, a different single-byte character set may be used.

Note that the Latin-1 alphabet is an 8-bit code but reserves two ranges for control codes. Message structure is
supplemented by ISO/IEC 6429:1992 control character set C0.

4.2 Field syntax

4.2.1 Tag (field identifier)

Each field is uniquely identified by an integer, known as a tag. Tags must be unique among both session and
application message fields. (Fields in the standard header and standard trailer components are shared by session and
application messages.)

Tags are serialized according to the syntax of the TagNum datatype.

4.2.2 Tag delimiter

A tag is delimited from its field value by the equals sign (=), character value 61 (decimal).

4.2.3 Field value

Field values are serialized according to their FIX datatype syntax.

4.2.4 Field delimiter

All fields in a FIX message, including those of datatype data, must be terminated by a delimiter character. The Start of
Heading control character, value 0x01, referred to in this document as <SOH>, is used for field termination.

There must be no embedded <SOH> characters within field values except for those of datatype data.

4.2.5 Well-formed field

A well-formed field has the form:

tag=value<SOH>

A field shall be considered malformed if any of the following occurs as a result of encoding:

• the tag is empty

• the tag delimiter is missing

• the value is empty

• the value contains an <SOH> character and the datatype of the field is not data or XMLdata

• the datatype of the field is data and the field is not immediately preceded by its associated Length field.

4.2.6 Example of a FIX tag=value message

The following is a FIX 4.2 NewOrderSingle(35=D) message in classic tagvalue pair format:

8=FIX.4.2<SOH>9=251<SOH>35=D<SOH>49=AFUNDMGR<SOH>56=ABROKER<SOH>34=2<SOH>

52=2003061501:14:49<SOH>11=12345<SOH>1=111111<SOH>63=0<SOH>64=20030621<SOH>

21=3<SOH>110=1000<SOH>111=50000<SOH>55=IBM<SOH>48=459200101<SOH>22=1<SOH>

54=1<SOH>60=2003061501:14:49<SOH>38=5000<SOH>40=1<SOH>44=15.75<SOH>15=USD<SOH>

59=0<SOH>10=127<SOH>

FIX TECHNICAL STANDARD June 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 9 of 25

4.3 Message structure

A FIX message is a collection of fields that begins with the BeginString(8) field, followed by the BodyLength(9) field,
then the MsgType(35) field, and ends with the Checksum(10) field. The message is identified by the value provided in
the MsgType(35) field.

The following section summarizes general specifications for constructing messages in tagvalue syntax.

The general format of a message is a standard header followed by the message body fields and terminated with a
standard trailer.

Each message is constructed of a stream of tag=value fields with a field delimiter between fields in the stream.
Messages will be referenced as message_name(35=x) with x representing the message type; fields will be referenced
as field_name(tag).

4.3.1 Message type

The MsgType(35) field is used to identify the type of message encoded. The definition and scope of the message type
is provided by the encoder. For example, the FIX session layer standard defines a set of messages to initiate and
manage a FIX session. The FIX application layer standard (commonly referred to as FIX Latest) defines additional
message types for business level processing. There are no message types or reserved values for message types
defined at the encoding level.

4.3.2 Field presence

In a message definition, a field must be specified as either required, optional, or conditionally required. If it is
conditionally required, the message specification must give a clear rule for when the field must be present.

All fields present in an encoded message must have a value. Optional fields without values must be omitted from the
FIX message.

A tag (field) must appear at most once in a message, except when the tag appears within a repeating group.

A tag (field) must appear at most once per repeating group instance.

4.3.3 Field sequence

Except where noted, fields within a message can be defined in any sequence. (Relative position of a field within a
message is inconsequential.) The exceptions to this rule are:

• General message format is composed of the standard header, followed by the body, followed by the
standard trailer.

• The first three fields in the StandardHeader component must be BeginString(8), followed by
BodyLength(9), followed by MsgType(35), in that sequence.

• The last field in the standard trailer must be CheckSum(10).

• Within a repeating group, field sequence is strictly defined by a group definition.

4.3.4 Message delimiter

Messages are effectively delimited by the <SOH> character at the end of the CheckSum(10) field.

All messages must begin with the BeginString(8) field and terminate with the CheckSum(10) field.

4.3.5 Components

Application level messages, representing the FIX application layer, can organize a collection of fields into a set
commonly referred to as a component or a submessage. These components can contain sub-components.

The FIX tagvalue encoding does not represent component boundaries in the encoding. Any component boundary is
lost during encoding. Further, FIX tagvalue encoding does not require the collection of fields to be ordered, and does
not enforce component boundaries around the fields in the encoding.

FIX TECHNICAL STANDARD June 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 10 of 25

4.3.6 Groups and repeating groups

In ISO/IEC 11404:2007 terminology, a FIX repeating group is an array of records. An instance of a repeated record is
called a repeating group instance in this document.

It is permissible for fields to be repeated within a repeating group. For example, the following represents a repeating
group with two repeating instances delimited by tag 372 (first field in the repeating group):

384=2<SOH>372=6<SOH>385=R<SOH>372=7<SOH>385=R<SOH>

4.3.6.1 Repeating group name

It is recommended that a repeating group be named XXXGrp, e.g. DividendPeriodGrp.

4.3.6.2 NumInGroup field

In tagvalue encoding, repeating group instances are preceded by a count of the number of instances to follow. The
count is serialized as a FIX field with a value of datatype NumInGroup, commonly referred to as a NumInGroup field.

It is recommended that NumInGroup fields be named NoXXX, e.g. NoContraBrokers(382).

4.3.6.3 Field sequence within a repeating group

• The NumInGroup field (for example: NoTradingSessions(386), NoAllocs(78)), which specifies the number of
repeating group instances, occurs once for a repeating group and must immediately precede the repeating
group instances.

• Fields within repeating groups must be specified in the order that the fields are specified in the message
definition.

4.3.6.4 Field presence within a repeating group

• The NumInGroup field is required and must be larger than zero if the repeating group is required, or if the
repeating group is optional and the message contains one or more instances for that repeating group.

• If a repeating group field is specifed as required, then it must appear in every instance of that repeating
group.

• If a repeating group is used in a message, its first field (after the NumInGroup field) must be populated in
each instance of the repeating group. This allows implementations of the protocol to use the first field as
the indicator for the start of a new instance within the repeating group.

• The first field listed after the NumInGroup field may be a component or nested repeating group. In this
case, the first field is defined as the first field of the component or the NumInGroup field of the nested
repeating group. The component or nested repeating group becomes required for every instance of the
outer repeating group.

• The presence of optional or conditionally required fields may vary across repeating group instances.

4.3.6.5 Nested repeating groups

Repeating groups may be nested within another repeating group. Multiple levels of nesting are allowed. In an
encoded message, nested repeating groups are serialized as a depth-first tree traversal. That is, all instances of a
nested group of the first top-level group instance are encoded before the second instance of the top-level group, and
so forth.

Nesting
Level Tag Field Name Notes

Start Level 1 453 NoPartyIDs This repeating group is the Parties component in the FIX Standard.

 448 > PartyID Must always be the first field in the repeating group, and must be
provided if NoPartyIDs(453) > 0.

 447 > PartyIDSource Required if NoPartyIDs(453) > 0.

FIX TECHNICAL STANDARD June 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 11 of 25

Nesting
Level Tag Field Name Notes

 452 > PartyRole Required if NoPartyIDs(453) > 0.

 2376 > PartyRoleQualifier Optional; not required for each repeating group instance.

Start Level 2 802 > NoPartySubIDs This nested repeating group is the PtysSubGrp component in the FIX
Standard.

 523 > > PartySubID Required if NoPartySubIDs(802) > 0.

 803 > > PartySubIDType Required if NoPartySubIDs(802) > 0.

End Level 2

End Level 1

4.3.6.6 Nested repeating group example

The following is an example of a Parties repeating group with three instances, two of which contain nested
PtysSubGrp repeating groups. This example also demonstrates that repeating group instances may be heterogeneous,
meaning that the fields present in an instance can vary across instances.

NoPartyIDs(453)=3

 PartyID(448)=DEU

 PartyIDSource(447)=B (Bank Identifier Code (BIC) ISO 9362)

 PartyRole(452)=1 (Executing Firm)

 NoPartySubIDs(802)=1

 PartySubID(523)=A1

 PartySubIDType(803)=10 (Securities account number)

 PartyID(448)=104317

 PartyIDSource(447)=H (CSD Participant Number)

 PartyRole(452)=83 (Clearing Account)

 PartyID(448)=GSI

 PartyIDSource(447)=B (Bank Identifier Code (BIC) ISO 9362)

 PartyRole(452)=4 (Clearing Firm)

 PartyRoleQualifier(2376)=23 (Firm or legal entity)

 NoPartySubIDs(802)=1

 PartySubID(523)=C3

 PartySubIDType(803)=10 (Securities account number)

This example is encoded in FIX tagvalue format as follows:

453=3<SOH>448=DEU<SOH>447=B<SOH>452=1<SOH>802=1<SOH>523=A1<SOH>803=10<SOH>448=104317<SOH>

447=H<SOH>452=83<SOH>448=GSI<SOH>447=B<SOH>452=4<SOH>2376=23<SOH>802=1<SOH>523=C3<SOH>

803=10<SOH>

4.3.7 Encoded data fields

Tagvalue encoding provides features for embedding fields in any IANA-registered encoding, possibly using multibyte
character sets. Such fields must be preceded by an associated Length field that specifies the number of octets in the
encoded data field.

4.3.7.1 MessageEncoding field

MessageEncoding(347) is a field in the StandardHeader component that gives the name of an encoding used in a
message.

4.3.7.2 Examples of using encoded data fields for Japanese language support

Example 1 – Specify the English value as Issuer plus Japanese character set as EncodedIssuer(349)

FIX TECHNICAL STANDARD June 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 12 of 25

Tag Field Name Value

…Other standard header fields

347 MessageEncoding Shift_JIS

…Other standard header fields

…Other message body fields

106 Issuer HITACHI

348 EncodedIssuerLen 10

349 EncodedIssuer

…Other message body fields

Example 2 – Specify the English value as Issuer(106) plus Japanese character set as EncodedIssuer(349). Specify the
English value as Text(58) plus Japanese character set as EncodedText(357).

Tag Field Name Value

…Other standard header fields

347 MessageEncoding Shift_JIS

…Other standard header fields

…Other message body fields

106 Issuer HITACHI

348 EncodedIssuerLen 10

349 EncodedIssuer

…Other message body fields

58 Text This is a test

356 EncodedTextLen 17

357 EncodedText

…Other message body fields

4.3.7.3 Precaution when using multibyte encodings

FIX tagvalue encoding processors must use the Length field associated with the encoded data field when parsing
encoded data fields to avoid field truncation and subsequent decoding errors. There is the possibility that one of the
octets in a multibyte encoded data field contains the 0x01 value, which can be interpreted by message parsers as the
<SOH> field delimiter if the associated Length field is not honored.

FIX TECHNICAL STANDARD June 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 13 of 25

5 Standard header and trailer

Fields specified in the standard header and trailer serve as delimiters of a message. These fields provide features for
message integrity, a body length in the header, and a checksum in the trailer.

5.1 Standard header

Each session or application layer message is preceded by a standard header. The header identifies the message type
and length. Higher layers (such as a session layer or an application layer) may extend the definitions of the standard
header and trailer by using additional fields, groups, or components.

5.1.1 Body length calculation

The message length must be specified in the BodyLength(9) field. The length must be calculated by counting the
number of octets in the message following the end of field delimiter (<SOH>) of BodyLength(9), up to and including
the end of field delimiter (<SOH>) of the field immediately preceding the CheckSum(10) field.

5.1.2 Standard header definition

Tag Field Name Datatype Req’d Comments

8 BeginString String Y FIX.4.2 | FIX.4.4 | FIXT.1.1
BeginString(8) must be the first field in the message.

9 BodyLength Length Y Message length, in octets.
BodyLength(9) must be the second field in the message.

35 MsgType String Y Defines message type.
MsgType(35) must be the third field in the message.

90 SecureDataLen Length N Length field for SecureData(91).
SecureDataLen(90) must be present and unencrypted if
SecureData(91) is present in the message.

91 SecureData Data N Encrypted message content.
Tag number, separator (“=”), and delimiter (<SOH>) must be
unencrypted. If present in the message, SecureData(91) must be
immediately preceded by SecureDataLen(90).

347 MessageEncoding String N Type of message encoding used in a message's encoded data fields.
MessageEncoding(347) must be specified if any fields of datatype data
are present in the message.

5.2 Standard trailer

5.2.1 Standard trailer definition

Tag Field Name Datatype Req’d Comments

93 SignatureLength Length N Length field for Signature(89).
SignatureLength(93) must be present and unencrypted if Signature(89)
is present in the message. SignatureLength(93) must not be included as
part of the encrypted content in SecureData(91).

89 Signature Data N If Signature(89) is present, it must be immediately preceded by
SignatureLength(93). Signature(89) must not be included as part of the
encrypted content in SecureData(91).

10 CheckSum String Y Three-octet character representation of the modulo 256 checksum.
Checksum(10) must be the last field in the message. The end of field

FIX TECHNICAL STANDARD June 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 14 of 25

Tag Field Name Datatype Req’d Comments

delimiter (<SOH>) of Checksum(10) serves as the end of message
delimiter.

5.2.2 Checksum

The checksum must be calculated by summing the binary value of each octet from the start of the BeginString(8) field
up to and including the end of field delimiter (<SOH>) of the field immediately preceding the CheckSum(10) field, then
transforming this value using a modulo 256.

The calculated modulo 256 checksum must then be encoded as an ISO 8859-1 three-octet representation of the
decimal value. For example, if the result of the modulo 256 of the sum of the value of the fields is 23, the
CheckSum(10) field will be encoded as the ISO 8859-1 string “10=023”. See Annex A for details.

FIX TECHNICAL STANDARD June 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 15 of 25

6 FIX tagvalue datatypes

Each field in FIX has a datatype. A datatype is defined as a combination of a value space and a lexical space. Value
space is the range of its possible values while lexical space is how those values are represented in a message encoding.

FIX datatypes are shared by session and application messages in tagvalue encoding.

6.1 Value space

The value space of FIX datatypes is shared among all FIX message encodings. Value space of datatypes is defined using
the vocabulary in ISO/IEC 11404:2007 Information technology – General-Purpose Datatypes (GPD).

6.2 Lexical space

This specification defines the lexical rules specific to FIX tagvalue encoding. FIX implementations must follow these
lexical rules to achieve interoperability.

6.2.1 Character encoding

With exception of fields of datatype data, tagvalue encoding uses a single-byte character set. By default, the encoding
is ISO/IEC 8859-1:1998 Latin alphabet No. 1. Note that the Latin-1 alphabet is an 8-bit code but reserves two ranges
for control codes.

By counterparty agreement, a different single-byte character set may be used.

6.2.2 Lexical encoding for FIX datatypes

Table 1 — FIX datatypes tagvalue encoding

Data Type Semantics

Value space
(ISO/IEC
11404:2007) Tagvalue lexical space

int integer number integer Sequence of character digits without
commas or decimals and optional sign
character (characters “-” and “0” - “9”). The
sign character utilizes one octet (i.e., positive
int is “99999” while negative int is “-99999”).
Note that int values may contain leading
zeros (e.g. “00023” = “23”).

TagNum A field’s tag number ordinal Sequence of character digits without
commas or decimals. Value must be positive
and may not contain leading zeros.

SeqNum A message sequence
number.

ordinal Sequence of character digits without
commas or decimals. Value must be positive.

NumInGroup The number of
entries in a
repeating group

size Sequence of character digits without
commas or decimals. Value must be positive.
Fields of datatype NumInGroup are referred
to as NumInGroup fields.

DayOfMonth Day number within
a month (values 1 to
31)

integer range 1..31 Sequence of character digits without
commas or decimals (values 1 to 31).

float All float fields must
accommodate up to
fifteen significant
digits. The number

real Sequence of character digits with optional
decimal point and sign character (characters
“-”, “0” - “9” and “.”); the absence of the
decimal point within the string will be

FIX TECHNICAL STANDARD June 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 16 of 25

Data Type Semantics

Value space
(ISO/IEC
11404:2007) Tagvalue lexical space

of decimal places
used should be a
factor of
business/market
needs and mutual
agreement between
counterparties.

interpreted as the float representation of an
integer value. Note that float values may
contain leading zeros (e.g. “00023.23” =
“23.23”) and may contain or omit trailing
zeros after the decimal point (e.g. “23.0” =
“23.0000” = “23” = “23.”).

Qty Either a whole
number (no decimal
places) of “shares”
(securities
denominated in
whole units) or a
decimal value
containing decimal
places for non-share
quantity asset
classes (securities
denominated in
fractional units).

Scaled

radix=10

Same as float

Price A price. Note the
number of decimal
places may vary. For
certain asset classes
prices may be
negative values. For
example, prices for
options strategies
can be negative
under certain
market conditions.

Scaled

radix=10

Same as float

PriceOffset A price offset, which
can be
mathematically
added to a Price.
Note the number of
decimal places may
vary and some fields
such as
LastForwardPoints
may be negative.

Scaled

radix=10

Same as float

Amt Typically
representing a Price
times a Qty

Scaled

radix=10

Same as float

Percentage A percentage
(e.g. 0.05 represents
5% and 0.9525
represents 95.25%).
Note the number of
decimal places may

real Same as float

FIX TECHNICAL STANDARD June 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 17 of 25

Data Type Semantics

Value space
(ISO/IEC
11404:2007) Tagvalue lexical space

vary.

char A single character.
All char fields are
case sensitive (i.e. m
!= M).

character

repertoire=8859-1
(Latin-1)1

Any character except control characters. By
default, ISO/IEC 8859-1 (Latin-1). By
counterparty agreement, a different
character set may be used.

Boolean Boolean boolean ‘Y’ = True/Yes
‘N’ = False/No

String Text. All String fields
are case sensitive
(i.e., “morstatt” !=
“Morstatt”).

characterstring

repertoire=8859-1
(Latin-1)2

Alphanumeric free-format strings can
include any character except control
characters.

MultipleCharValue3 Set of character
codes

set element = character

repertoire=8859-1
(Latin-1)4

String containing one or more space-
delimited single character values,
e.g. “2 A F”.

MultipleStringValue5 Set of string codes set element = character
string

repertoire=8859-1
(Latin-1)6

String containing one or more space-
delimited multiple character values,
e.g. “AV AN A”.

Country External code set
ISO 3166-1:2013
Codes for the
representation of
names of countries
and their
subdivisions - Part 1:
Country codes

array element=
character
index-lowerbound=1
index-upperbound=2

2-character code

Currency External code set
ISO 4217:2015
Codes for the
representation of
currencies and
funds

array element =
character
index-lowerbound=1
index-upperbound=3

3-character code

Exchange External code set
ISO 10383:2012
Securities and
related financial
instruments - Codes
for exchanges and

array element =
character
index-lowerbound=1
index-upperbound=4

4-character code

1 By counterparty agreement, a different single-byte character set may be used.
2 By counterparty agreement, a different single-byte character set may be used.
3 The use of datatype MultipleCharValue is no longer permitted for enhancements or additions to the FIX protocol. New message designs should use

repeating groups for multiple values instead.
4 By counterparty agreement, a different single-byte character set may be used.
5 The use of datatype MultipleStringValue is no longer permitted for enhancements or additions to the FIX protocol. New message designs should

use repeating groups for multiple values instead.
6 By counterparty agreement, a different single-byte character set may be used.

FIX TECHNICAL STANDARD June 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 18 of 25

Data Type Semantics

Value space
(ISO/IEC
11404:2007) Tagvalue lexical space

market
identification (MIC)

MonthYear Month and year of
instrument maturity
or expiration

characterstring String representing month of a year. An
optional day of the month can be appended
or an optional week code.

Valid formats:
YYYYMM
YYYYMMDD
YYYYMMWW

Valid values:
YYYY = 0000-9999; MM = 01-12; DD = 01-31;
WW = w1, w2, w3, w4, w5.

UTCTimestamp UTC date/time time

time-unit = millisecond
or up to picosecond by
bilateral agreement

String representing time/date combination
represented in UTC (Universal Time
Coordinated) in either YYYYMMDD-
HH:MM:SS (whole seconds) or YYYYMMDD-
HH:MM:SS.sss* format, colons, dash, and
period required.

Valid values:
YYYY = 0000-9999, MM = 01-12, DD = 01-31,
HH = 00-23, MM = 0059, SS = 00-60 (60 only
if UTC leap second), sss* fractions of
seconds. The fractions of seconds may be
empty when no fractions of seconds are
conveyed (in such a case the period is not
conveyed), it may include 3 digits to convey
milliseconds, 6 digits to convey
microseconds, 9 digits to convey
nanoseconds, 12 digits to convey
picoseconds; Other number of digits may be
used with bilateral agreement.

Leap Seconds: Note that UTC includes
corrections for leap seconds, which are
inserted to account for slowing of the
rotation of the earth. Leap second insertion
is declared by the International Earth
Rotation Service (IERS) and has, since 1972,
only occurred on the night of Dec. 31 or Jun
30. The IERS considers March 31 and
September 30 as secondary dates for leap
second insertion, but has never utilized
these dates. During a leap second insertion,
a UTCTimestamp field may read “19981231-
23:59:59”, “19981231-23:59:60”,
“19990101-00:00:00”. (see
http://tycho.usno.navy.mil/leapsec.html)

Examples:

FIX TECHNICAL STANDARD June 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 19 of 25

Data Type Semantics

Value space
(ISO/IEC
11404:2007) Tagvalue lexical space

“20011217-09:30:47.123” milliseconds
“20011217-09:30:47.123456” microseconds
“20011217-09:30:47.123456789”
nanoseconds
“20011217-09:30:47.123456789123”
picoseconds

UTCTimeOnly UTC time of day time

time-unit = millisecond
or up to picosecond by
bilateral agreement

String representing time-only represented in
UTC (Universal Time Coordinated) in either
HH:MM:SS (whole seconds) or
HH:MM:SS.sss* (milliseconds) format,
colons, and period required. This special-
purpose field is paired with UTCDateOnly to
form a proper UTCTimestamp for
bandwidth-sensitive messages.

Valid values:
HH = 00-23, MM = 00-59, SS = 00-60 (60 only
if UTC leap second), sss* fractions of
seconds. The fractions of seconds may be
empty when no fractions of seconds are
conveyed (in such a case the period is not
conveyed), it may include 3 digits to convey
milliseconds, 6 digits to convey
microseconds, 9 digits to convey
nanoseconds, 12 digits to convey
picoseconds; Other number of digits may be
used with bilateral agreement.

Examples:
“13:20:00.123”milliseconds
“13:20:00.123456” microseconds
“13:20:00.123456789” nanoseconds
“13:20:00.123456789123” picoseconds

UTCDateOnly UTC date time

time-unit = day

Date represented in UTC (Universal Time
Coordinated) in YYYYMMDD format.

Valid values:
YYYY = 0000-9999, MM = 01-12, DD = 01-31.

LocalMktDate Local date time

time-unit = day

Date of local market (as opposed to UTC) in
YYYYMMDD format.

Valid values:
YYYY = 0000-9999, MM = 01-12, DD = 01-31.

TZTimeOnly Time of day with
timezone

time

time-unit = millisecond
or up to picosecond by
bilateral agreement

Time represented based on ISO 8601. This is
the time with a UTC offset to allow
identification of local time and time zone of
that time.

Format is HH:MM[:SS][Z | [+ | - hh[:mm]]]
where HH = 00-23 hours, MM = 00-59
minutes, SS = 00-59 seconds, hh = 01-12

FIX TECHNICAL STANDARD June 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 20 of 25

Data Type Semantics

Value space
(ISO/IEC
11404:2007) Tagvalue lexical space

offset hours, mm = 00-59 offset minutes.

TZTimestamp Date/time with
timezone

time

time-unit = millisecond
or up to picosecond by
bilateral agreement

String representing a time/date combination
representing local time with an offset to UTC
to allow identification of local time and time
zone offset of that time. The representation
is based on ISO 8601.

Format is YYYYMMDD-HH:MM:SS.sss*[Z | [+
| - hh[:mm]]] where YYYY = 0000 to 9999,
MM = 01-12, DD = 01-31 HH = 00-23 hours,
MM = 00-59 minutes, SS = 00-59 seconds, hh
= 01-12 offset hours, mm = 00-59 offset
minutes, sss* fractions of seconds. The
fractions of seconds may be empty when no
fractions of seconds are conveyed (in such a
case the period is not conveyed), it may
include 3 digits to convey milliseconds, 6
digits to convey microseconds, 9 digits to
convey nanoseconds, 12 digits to convey
picoseconds; Other number of digits may be
used with bilateral agreement.

Examples:
“20060901-07:39Z” is 07:39 UTC on 1st of
September 2006
“20060901-02:39-05” is five hours behind
UTC, thus Eastern Time on 1st of September
2006
“20060901-15:39+08” is eight hours ahead
of UTC, thus Hong Kong/Singapore time on
1st of September 2006
“20060901-13:09+05:30” is 5.5 hours ahead
of UTC, thus India time on 1st of September
2006

Using decimal seconds:
“20060901-13:09.123+05:30” milliseconds
“20060901-13:09.123456+05:30”
microseconds
“20060901-13:09.123456789+05:30”
nanoseconds
“20060901-13:09.123456789123+05:30”
picoseconds
“20060901-13:09.123456789Z”
nanoseconds (UTC time zone)

Length7 Length of a data
field in octets

size Sequence of character digits without
commas or decimals. Value must be positive.
Fields of datatype Length are referred to as
Length fields.

7 Note that the number of octets in the encoding may be different than the number of characters, such as in the case of multibyte character sets.

FIX TECHNICAL STANDARD June 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 21 of 25

Data Type Semantics

Value space
(ISO/IEC
11404:2007) Tagvalue lexical space

The Length field must be associated with a
field of datatype data.
The Length field must specify the number of
octets of the value contained in the
associated data field up to but not including
the terminating <SOH>.

data8 Opaque data or
variable-length
string

A union of two
datatypes:
octetstring and
characterstring

repertoire=(value
encoded using the
encoding specified in
the
MessageEncoding(347)
field

Raw data with no format or content
restrictions, or a character string encoded as
specified by MessageEncoding(347).
Fields of datatype data must have an
associated field of type Length.
Fields of datatype data must be immediately
preceded by their associated Length field.

Tenor characterstring Used to allow the expression of FX standard
tenors in addition to the base valid
enumerations defined for the field that uses
this pattern data type. This pattern data type
is defined as follows:

Dx = tenor expression for “days”, e.g. “D5”,
where “x” is any integer > 0
Mx = tenor expression for “months”,
e.g. “M3”, where “x” is any integer > 0
Wx = tenor expression for “weeks”,
e.g. “W13”, where “x” is any integer > 0
Yx = tenor expression for “years”, e.g. “Y1”,
where “x” is any integer > 0

Reserved100Plus Values 100 and
above are reserved
for bilaterally
agreed upon user
defined
enumerations.

integer range
minInclusive=100

Sequence of character digits without
commas or decimals.

Reserved1000Plus Values 1000 and
above are reserved
for bilaterally
agreed upon user
defined
enumerations.

integer range
minInclusive=1000

Sequence of character digits without
commas or decimals.

Reserved4000Plus Values 4000 and
above are reserved
for bilaterally
agreed upon user

integer range
minInclusive=4000

Sequence of character digits without
commas or decimals.

8 Datatype data is a union of opaque data and character data in a different encoding. It is recommended that the latter case be distinguished by
naming such a field as EncodedXXX, e.g. EncodedSecurityDesc(351).

FIX TECHNICAL STANDARD June 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 22 of 25

Data Type Semantics

Value space
(ISO/IEC
11404:2007) Tagvalue lexical space

defined
enumerations.

XMLData XML document characterstring

repertoire=(value of
XML encoding
declaration)

A field of datatype XMLData must contain a
well-formed document, as defined by the
W3C XML recommendation. Fields of
datatype XMLData must have an associated
field of type Length. Fields of datatype
XMLData must be immediately preceded by
their associated Length field.

Language External code set
ISO 639-1:2002
Codes for the
representation of
names of languages
– Part 1: Alpha-2
code

array element =
character
index-lowerbound=1
index-upperbound=2

2-character code

LocalMktTime Time local to a
market center.

time

time-unit=second

Used where offset to UTC varies throughout
the year and the defining market center is
identified in a corresponding field.

Format is HH:MM:SS where HH = 00-23
hours, MM = 00-59 minutes, SS = 00-59
seconds. In general only the hour token is
non-zero.

6.2.3 XML data

An XMLData field may be accompanied by a field of datatype String, giving the XML schema used to validate the field
of datatype XMLData. A schema field, if provided, should contain the URI of a governing XML schema.

Example – XML Definition of a Security

Tag Field name FIX Datatype

1184 SecurityXMLLen Length

1185 SecurityXML XMLData

1186 SecurityXMLSchema String

FIX TECHNICAL STANDARD June 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 23 of 25

7 Code sets

A code set is a finite, unordered set of valid values that may be applied to a field. In ISO/IEC 11404:2007, a code set is
known as state datatype. (state is distinguished from enumeration by being unordered, while an enumeration is
ordered.) FIX fields may have their value space constrained to a code set. Multiple fields may share a common code
set.

7.1 Underlying value type

Code set literals are constrained to an underlying value type. In FIX, code sets may be of int, char, or String type.

7.1.1 Internal code sets

For an internal code set, the valid values are listed in the FIX message standard.

7.1.2 External code sets

External code sets are governed and maintained by other standards organizations. The valid values are not explicitly
listed in the FIX message standard.

FIX TECHNICAL STANDARD June 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 24 of 25

Annex A
(informative)

Checksum calculation

The checksum of a FIX message is calculated by summing every octet of the message up to and including the <SOH>
character of the field preceding the CheckSum(10) field. This checksum is then transformed into a modulo 256
number.

For example, if the message length sum of character values has been calculated to be 274 then the modulo 256 value
is 18 (256 + 18 = 274). This value would be encoded in the CheckSum(10) field as "10=018".

A sample code fragment to generate the checksum field is as follows:

char *GenerateCheckSum(char *buf, long bufLen)

{

 static char tmpBuf[4];

 long idx;

 unsigned int cks;

 for(idx = 0L, cks = 0; idx < bufLen; cks += (unsigned int)buf[idx++]);

 sprintf(tmpBuf, "%03d", (unsigned int)(cks % 256));

 return(tmpBuf);

}

FIX TECHNICAL STANDARD June 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 25 of 25

Bibliography
[1] Financial Information eXchange – FIX Session Layer Technical Specification

[2] FIX 4.2 Specification with 20010501 Errata https://www.fixtrading.org/standards/fix-4-2/

[3] FIX 4.4 Specification with 20030618 Errata https://www.fixtrading.org/standards/fix-4-4/

[4] FIX 5.0 Specification Service Pack 2 with 20131209 Errata https://www.fixtrading.org/standards/fix-5-0-sp-2/

[5] FpML 5.11 Recommendation https://www.fpml.org/spec/fpml-5-11-8-rec-1/

[6] FIX Orchestra Technical Specification Draft Standard v1.0 https://www.fixtrading.org/packages/fix-orchestra-
technical-specification-draft-standard-v1-0/

Unsupported FIX application versions:

[7] FIX 4.3 Specifications https://www.fixtrading.org/standards/unsupported/fix-4-3/

[8] FIX 5.0 Specifications https://www.fixtrading.org/standards/unsupported/fix-5-0/

[9] FIX 5.0 SP1 Specifications https://www.fixtrading.org/standards/unsupported/fix-5-0-sp1/

https://www.fixtrading.org/standards/fix-4-2/
https://www.fixtrading.org/standards/fix-4-4/
https://www.fixtrading.org/standards/fix-5-0-sp-2/
https://www.fpml.org/spec/fpml-5-11-8-rec-1/
https://www.fixtrading.org/packages/fix-orchestra-technical-specification-draft-standard-v1-0/
https://www.fixtrading.org/packages/fix-orchestra-technical-specification-draft-standard-v1-0/
https://www.fixtrading.org/standards/unsupported/fix-4-3/
https://www.fixtrading.org/standards/unsupported/fix-5-0/
https://www.fixtrading.org/standards/unsupported/fix-5-0-sp1/

	1 Scope
	2 Normative references
	3 Terms and definitions
	3.1 General terms and definitions
	3.1.1 field presence
	3.1.2 component presence
	3.1.3 repeating group instance
	3.1.4 character digit

	4 FIX tagvalue message syntax
	4.1 Character encoding
	4.2 Field syntax
	4.2.1 Tag (field identifier)
	4.2.2 Tag delimiter
	4.2.3 Field value
	4.2.4 Field delimiter
	4.2.5 Well-formed field
	4.2.6 Example of a FIX tag=value message

	4.3 Message structure
	4.3.1 Message type
	4.3.2 Field presence
	4.3.3 Field sequence
	4.3.4 Message delimiter
	4.3.5 Components
	4.3.6 Groups and repeating groups
	4.3.6.1 Repeating group name
	4.3.6.2 NumInGroup field
	4.3.6.3 Field sequence within a repeating group
	4.3.6.4 Field presence within a repeating group
	4.3.6.5 Nested repeating groups
	4.3.6.6 Nested repeating group example

	4.3.7 Encoded data fields
	4.3.7.1 MessageEncoding field
	4.3.7.2 Examples of using encoded data fields for Japanese language support
	4.3.7.3 Precaution when using multibyte encodings

	5 Standard header and trailer
	5.1 Standard header
	5.1.1 Body length calculation
	5.1.2 Standard header definition

	5.2 Standard trailer
	5.2.1 Standard trailer definition
	5.2.2 Checksum

	6 FIX tagvalue datatypes
	6.1 Value space
	6.2 Lexical space
	6.2.1 Character encoding
	6.2.2 Lexical encoding for FIX datatypes
	6.2.3 XML data

	7 Code sets
	7.1 Underlying value type
	7.1.1 Internal code sets
	7.1.2 External code sets

	Annex A (informative) Checksum calculation
	Bibliography

