

© Copyright, 2011-2020, FIX Protocol, Limited

FIX Session Layer
Technical Specification

Technical Standard – Errata November 2020

THIS DOCUMENT IS THE FINAL VERSION OF A FIX TECHNICAL STANDARD. THIS VERSION HAS BEEN
APPROVED BY THE GLOBAL TECHNICAL COMMITTEE AS THE FINAL STEP IN CREATING A NEW FIX
TECHNICAL STANDARD OR A NEW VERSION OF AN EXISTING FIX TECHNICAL STANDARD. POTENTIAL
ADOPTERS ARE STRONGLY ENCOURAGED TO USE ONLY THE FINAL VERSION. EXISTING ADOPTERS ARE
STRONGLY ENCOURAGED TO UPGRADE TO THE FINAL VERSION.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 2 of 82

Table of Contents

1 Scope .. 7

2 Normative references .. 8

3 Terms and definitions .. 9

3.1 General terms and definitions.. 9
3.1.1 session layer message .. 9
3.1.2 application message .. 9
3.1.3 message type ... 9
3.1.4 valid FIX message ... 9
3.1.5 FIX session processor ... 9
3.1.6 initiator .. 9
3.1.7 acceptor ... 9
3.1.8 rules of engagement .. 9
3.1.9 peer .. 9
3.1.10 counterparty .. 9
3.1.11 NextNumIn ... 9
3.1.12 NextNumOut .. 10
3.1.13 retransmission ... 10
3.1.14 resend .. 10
3.1.15 gap fill ... 10
3.1.16 application version ... 10
3.1.17 extension pack ... 10
3.1.18 session profile .. 10
3.1.19 CompID .. 10
3.1.20 SubID .. 10
3.1.21 LocationID .. 10
3.1.22 transport layer connection .. 10
3.1.23 in-band communication ... 11
3.1.24 out-of-band communication .. 11
3.1.25 TestRequestThreshold ... 11
3.1.26 SendingTimeThreshold .. 11
3.1.27 LogoutAckThreshold .. 11

4 FIX session ...12

4.1 Sequence numbers ... 12

4.2 Identifying the FIX session .. 13
4.2.1 The FIX session profile ... 13
4.2.2 Identification of FIX session peers ... 13
4.2.3 Validation of SendingTime(52) .. 14
4.2.4 Additional fields available for peer identification ... 14

4.3 Establishing a FIX connection ... 14
4.3.1 Transport layer requirements .. 14
4.3.2 Using the TestMessageIndicator(464) to explicitly identify testing .. 14
4.3.3 Application layer encryption .. 15
4.3.4 Heartbeat interval .. 15
4.3.5 Heartbeat interval determination ... 15

4.3.5.1 Acceptor requires a specific heartbeat interval .. 15
4.3.5.2 Acceptor requires initiator specify a value within a heartbeat interval range 15
4.3.5.3 Acceptor accepts the initiator specified heartbeat interval .. 16

4.3.6 Maximum message size ... 16
4.3.7 Specifying application version ... 16
4.3.8 Specifying supported message types... 16
4.3.9 Identification of application system and FIX session processor .. 16
4.3.10 Responding to a request to establish a FIX session ... 17

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 3 of 82

4.3.11 Initial synchronization of messages in a FIX connection ... 18
4.3.12 Synchronization after successful logon ... 19

4.4 Extended features for FIX session and FIX connection initiation ... 23
4.4.1 Using NextExpectedMsgSeqNum(789) to synchronize a FIX session .. 23
4.4.2 Using ResetSeqNumFlag(141) to reset FIX session for 24 hour connectivity .. 25
4.4.3 Using ResetSeqNumFlag(141) to reset FIX session during FIX connection establishment 25
4.4.4 Using initiator state to restore acceptor session state.. 25

4.5 Message exchange during a FIX connection .. 26
4.5.1 FIX connection keep alive (heartbeat) ... 26
4.5.2 Garbled message processing ... 26
4.5.3 Missing sequence number ... 27
4.5.4 Rejecting invalid messages .. 27
4.5.5 Test Request Processing .. 28

4.6 FIX connection termination .. 29
4.6.1 Normal logout processing .. 30
4.6.2 Logout without acknowledgement from peer .. 31
4.6.3 Logout with retransmission of missed messages .. 32
4.6.4 When to terminate a FIX connection by terminating the transport layer connection instead of
sending a Logout(35=5) .. 32

4.7 Extended features for FIX connection Termination ... 33
4.7.1 Using NextExpectedMsgSeqNum(789) when terminating FIX connection due to invalid
MsgSeqNum(34) ... 33

4.8 Message recovery... 33
4.8.1 Ordered message processing... 33
4.8.2 Request retransmission of messages .. 34
4.8.3 Responding to a ResendRequest(35=2) message .. 35
4.8.4 Possible duplicates ... 36
4.8.5 Gap fill process ... 37

4.8.5.1 Example using SequenceReset(35=4) to gap fill over multiple messages............................... 37
4.8.6 Sequence reset .. 38
4.8.7 Processing inbound possible duplicate messages (PossDup(43) set to “Y”) ... 39
4.8.8 Processing gaps when receiving FIX session layer messages .. 39

4.9 Resending an unacknowledged application message .. 40
4.9.1 The difference between application layer resend and session layer retransmission 41

4.10 FIX session state matrix .. 42
4.10.1 FIX logon process state transition diagram ... 44
4.10.2 FIX logout process state transition diagram .. 45

5 FIX session profiles ...47

5.1 FIX.4.2 session profile ... 47
5.1.1 Profile identification .. 47
5.1.2 Application version identification .. 47

5.2 FIX4 session profile ... 47
5.2.1 Profile identification .. 47
5.2.2 Application version identification .. 47

5.3 FIXT session profile ... 48
5.3.1 Profile identification .. 48
5.3.2 Multiple application version support over a single FIXT session ... 48
5.3.3 Session default application version identification ... 48
5.3.4 Message type default application version ... 48
5.3.5 Explicit application version per message ... 48
5.3.6 Use of extension packs .. 49
5.3.7 Use of a custom application version .. 49

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 4 of 82

5.4 Lightweight FIXT (LFIXT session profile) ... 50
5.4.1 Profile identification .. 50
5.4.2 Application version identification .. 50
5.4.3 LFIXT transport layer requirements ... 50
5.4.4 LFIXT compatible mode ... 50
5.4.5 LFIXT succinct mode... 51
5.4.6 LFIXT and FIXT operating mode interoperability ... 51
5.4.7 Validation of message sequence numbers .. 52
5.4.8 Application layer recovery ... 52
5.4.9 LFIXT initiator connects to LFIXT acceptor... 52
5.4.10 FIXT initiator connects to LFIXT acceptor (compatible mode) .. 53
5.4.11 Receipt of ResendRequest(35=2) message from a FIXT peer .. 55
5.4.12 Processing invalid messages .. 56

6 FIX message routing ...57

6.1 Message routing details – one firm-to-one firm (point-to-point) ... 57

6.2 Message routing details – third party message routing .. 57

7 Transmitting alternatively encoded messages over a FIX session ..59

7.1 Use of Attachment group ... 59

8 Components...60

8.1 AttachmentGrp ... 60

8.2 AttachmentKeywordGrp .. 60

8.3 HopGrp ... 61

8.4 MsgTypeGrp ... 61

8.5 StandardHeader ... 62

8.6 StandardTrailer ... 63

9 Messages ...65

9.1 Heartbeat message .. 65

9.2 TestRequest message ... 65

9.3 ResendRequest message .. 65

9.4 Reject message ... 65

9.5 SequenceReset message .. 66

9.6 Logout message .. 67

9.7 Logon message ... 67

9.8 XMLnonFIX message... 69

10 Fields ...70

11 Code sets ...77

11.1 ApplLevelRecoveryIndicatorCodeSet ... 77

11.2 ApplVerIDCodeSet .. 77

11.3 AttachmentEncodingTypeCodeSet .. 77

11.4 EncryptMethodCodeSet ... 78

11.5 GapFillFlagCodeSet ... 78

11.6 MsgDirectionCodeSet ... 78

11.7 MsgTypeCodeSet .. 78

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 5 of 82

11.8 PossDupFlagCodeSet .. 79

11.9 PossResendCodeSet ... 79

11.10 ResetSeqNumFlagCodeSet ... 79

11.11 SessionRejectReasonCodeSet .. 79

11.12 SessionStatusCodeSet .. 80

11.13 TestMessageIndicatorCodeSet ... 81

Bibliography ..82

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 6 of 82

DISCLAIMER
THE INFORMATION CONTAINED HEREIN AND THE FINANCIAL INFORMATION EXCHANGE PROTOCOL (COLLECTIVELY,
THE “FIX PROTOCOL”) ARE PROVIDED “AS IS” AND NO PERSON OR ENTITY ASSOCIATED WITH THE FIX PROTOCOL
MAKES ANY REPRESENTATION OR WARRANTY, EXPRESS OR IMPLIED, AS TO THE FIX PROTOCOL (OR THE RESULTS TO
BE OBTAINED BY THE USE THEREOF) OR ANY OTHER MATTER AND EACH SUCH PERSON AND ENTITY SPECIFICALLY
DISCLAIMS ANY WARRANTY OF ORIGINALITY, ACCURACY, COMPLETENESS, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. SUCH PERSONS AND ENTITIES DO NOT WARRANT THAT THE FIX PROTOCOL WILL CONFORM
TO ANY DESCRIPTION THEREOF OR BE FREE OF ERRORS. THE ENTIRE RISK OF ANY USE OF THE FIX PROTOCOL IS
ASSUMED BY THE USER.

NO PERSON OR ENTITY ASSOCIATED WITH THE FIX PROTOCOL SHALL HAVE ANY LIABILITY FOR DAMAGES OF ANY KIND
ARISING IN ANY MANNER OUT OF OR IN CONNECTION WITH ANY USER’S USE OF (OR ANY INABILITY TO USE) THE FIX
PROTOCOL, WHETHER DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL (INCLUDING, WITHOUT
LIMITATION, LOSS OF DATA, LOSS OF USE, CLAIMS OF THIRD PARTIES OR LOST PROFITS OR REVENUES OR OTHER
ECONOMIC LOSS), WHETHER IN TORT (INCLUDING NEGLIGENCE AND STRICT LIABILITY), CONTRACT OR OTHERWISE,
WHETHER OR NOT ANY SUCH PERSON OR ENTITY HAS BEEN ADVISED OF, OR OTHERWISE MIGHT HAVE ANTICIPATED
THE POSSIBILITY OF, SUCH DAMAGES.

DRAFT OR NOT RATIFIED PROPOSALS (REFER TO PROPOSAL STATUS AND/OR SUBMISSION STATUS ON COVER PAGE)
ARE PROVIDED “AS IS” TO INTERESTED PARTIES FOR DISCUSSION ONLY. PARTIES THAT CHOOSE TO IMPLEMENT THIS
DRAFT PROPOSAL DO SO AT THEIR OWN RISK. IT IS A DRAFT DOCUMENT AND MAY BE UPDATED, REPLACED, OR
MADE OBSOLETE BY OTHER DOCUMENTS AT ANY TIME. THE FIX GLOBAL TECHNICAL COMMITTEE WILL NOT ALLOW
EARLY IMPLEMENTATION TO CONSTRAIN ITS ABILITY TO MAKE CHANGES TO THIS SPECIFICATION PRIOR TO FINAL
RELEASE. IT IS INAPPROPRIATE TO USE FIX WORKING DRAFTS AS REFERENCE MATERIAL OR TO CITE THEM AS OTHER
THAN “WORKS IN PROGRESS”. THE FIX GLOBAL TECHNICAL COMMITTEE WILL ISSUE, UPON COMPLETION OF REVIEW
AND RATIFICATION, AN OFFICIAL STATUS (“APPROVED”) OF/FOR THE PROPOSAL AND A RELEASE NUMBER.

No proprietary or ownership interest of any kind is granted with respect to the FIX Protocol (or any rights therein),
except as expressly set out in FIX Protocol Limited’s Copyright and Acceptable Use Policy.

© Copyright 2003-2020 FIX Protocol Limited, all rights reserved

FIX Technical Standard Specifications by FIX Protocol Ltd. are licensed under a Creative Commons Attribution-
NoDerivatives 4.0 International License. Based on a work at https://github.com/FIXTradingCommunity/.

https://www.fixtradingcommunity.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://github.com/FIXTradingCommunity/

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 7 of 82

1 Scope

The Financial Information eXchange session layer is used to provide reliable and recoverable messaging for electronic
trading. The protocol is intended for use by asset managers, trading firms, brokerages, trading venues, clearing
houses, custodians, depositories, asset servicers, among others involved in the trading life cycle activities of a wide
range of financial instruments. The FIX session layer functionality is a realization of the ISO/IEC 7498-1:1994 Open
System Interconnection basic reference model level 5 session layer.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 8 of 82

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references, the
latest edition of the referenced document (including any amendments) applies.

— IETF RFC 2119 – Key words for use in RFCs to Indicate Requirement Levels March 1997

— Financial Information eXchange – FIX TagValue Encoding Technical Specification

— FIXS Technical Specification – Draft Standard https://www.fixtrading.org/standards/fixs/

— EP113 CME Trading System Identification https://www.fixtrading.org/packages/ep113/

— EP124 NGM Logon Extension https://www.fixtrading.org/packages/ep124/

— EP167 AttachmentGrp Proposal https://www.fixtrading.org/packages/ep167/

file://///Users/hanno/FIX%20Protocol/GitHub/fix-session-layer-standards/target/docx/%255bhttps:/www.fixtrading.org/standards/fixs/
file://///Users/hanno/FIX%20Protocol/GitHub/fix-session-layer-standards/target/docx/%255bhttps:/www.fixtrading.org/packages/ep113/
file://///Users/hanno/FIX%20Protocol/GitHub/fix-session-layer-standards/target/docx/%255bhttps:/www.fixtrading.org/packages/ep124/
file://///Users/hanno/FIX%20Protocol/GitHub/fix-session-layer-standards/target/docx/%255bhttps:/www.fixtrading.org/packages/ep167/

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 9 of 82

3 Terms and definitions

3.1 General terms and definitions

3.1.1 session layer message

A message carried over the FIX session that is integral to the operation of the FIX session.

3.1.2 application message

A message that is carried over a FIX session to accomplish some business purpose, such as an order to buy or sell a
financial instrument, reporting market data, reporting an execution of a trade.

3.1.3 message type

An identifier (code) that defines the type of message being sent. The message type for the FIX session is a case
sensitive string encoded in the MsgType(35) field.

3.1.4 valid FIX message

A session or application message that is a tagvalue encoded string of octets that is properly formed according to the
FIX tagvalue encoding specification.

3.1.5 FIX session processor

A combination of computer hardware, firmware, and software that implements the FIX session layer. Commonly
referred to as a FIX Engine.

3.1.6 initiator

The FIX session processor that establishes the transport layer connection and initiates the session via transmission of
the initial Logon(35=A) message.

3.1.7 acceptor

The FIX session processor that is able to establish a transport layer connection and receive Logon(35=A) requests from
FIX session initiators to start or resume a FIX session.

3.1.8 rules of engagement

A specification, usually provided in document form, that describes a specific use of FIX. Often referred to as a FIX
service offering. FIX Orchestra is a standard that may be used to specify a machine readable rules of engagement.

3.1.9 peer

A peer is one of the FIX session processors being communicated with over a FIX session. The peer of the initiator is the
acceptor. The peer of the acceptor is the initiator. The initiator and acceptor are peers.

3.1.10 counterparty

The firms or legal entities or individuals agreeing to use the FIX session layer to conduct some form of business
endeavor.

3.1.11 NextNumIn

Each FIX session processor must keep track of the next message sequence number it is expecting to receive from its
peer to guarantee ordered delivery of messages over the life of a FIX session that may span multiple FIX connections.
The next expected incoming sequence number (NextNumIn) is compared to the value in the MsgSeqNum(34) field in
each message received from the peer.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 10 of 82

3.1.12 NextNumOut

Each FIX session processor must keep track of the next outbound sequence number (NextNumOut) it will send to its
peer over a FIX connection.

3.1.13 retransmission

To retransmit a message that was previously sent in order to resynchronize the FIX session. A retransmitted message
uses the original MsgSeqNum(34) value with PossDupFlag(43)=Y.

3.1.14 resend

The process of an application layer resending an application message because it has not received an application layer
acknowledgement for the message. A resend may only be initiated by the application layer, not the session layer. The
determination if the message was previously received is the responsibility of the application layer, not the session
layer.

3.1.15 gap fill

The process to resolve gaps in message sequence numbers within a FIX session.

3.1.16 application version

The FIX session layer provides fields to communicate versions of the application layer messages. The FIX Trading
Community defines standard application versions.

3.1.17 extension pack

An extension pack is an approved addition to the FIX standard. The granularity of an extension pack may vary widely
from a single enumeration value addition to the definition of entire new categories of messages. Extension packs are
identified by a sequential integer number and must be applied in order. An Extension pack is considered available for
use if it has been approved and published by the FIX Global Technical Committee. Extension packs are created on an
as needed basis and are generally driven by community requests. An extension pack is cumulative, in that the
artefacts (Orchestra file, FIXimate) include all previous extension packs. When an extension pack is published, it
becomes the FIX Latest version of FIX.

3.1.18 session profile

Session profiles are extensions or restrictions on the use of the standard session layer messages that can be used to
represent context of usage. FIX4, FIXT, and LFIXT are the current FIX session profiles.

3.1.19 CompID

An alphanumeric identifier for the entity associated with a FIX session. As this is likely a financial markets participant
company, the name was viewed colloquially as a company identifier abbreviated as a CompID.

3.1.20 SubID

A subidentifier optionally available to identify a subentity within a CompID. The SubID may be used to identify a
specific trader or a subunit of a business entity. The use of SubIDs is at the discretion of the counterparties. Certain
regulatory regimes globally require the use of SubID to identify specific traders.

3.1.21 LocationID

A location identifier providing additional location information either geographical or within a trading desk on a trading
floor. The use of LocationIDs is at the discretion of the counterparties.

3.1.22 transport layer connection

A FIX session relies on a transport layer to provide for ordered delivery of messages and message recovery during the
life of the transport layer connection. The FIX session does not require a specific transport layer, although TCP/IP is
widely used and is a de facto standard transport layer for FIX sessions. TCP/IP provides an ordered reliable delivery of

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 11 of 82

a stream of bytes during the life of the TCP connection. The FIX session processor reads this stream identifying FIX
message boundaries.

3.1.23 in-band communication

Transmitting control information or metadata about the application layer or session layer in application and session
FIX message types over the FIX session. Sending the HeartBtInt(108) field in the Logon(35=A) message is an example of
in-band transmission of control information. Providing version information about a FIX service in the
CstmApplVerID(1129) on the Logon(35=A) message is another example.

3.1.24 out-of-band communication

Exchanging control information or metadata about a FIX session via a separate communication mechanism than the
FIX session. Providing the TestRequestThreshold in a rules of engagement document is an example of exchanging
information out-of-band. Providing version information about a FIX service on a website or in a rules of engagement
document is another example of out-of-band communication. Providing access to a specification online via a website
or web service would be another example of out-of-band communication. Even though this is electronic
communication, it is not being done over the FIX session to which that information applies.

3.1.25 TestRequestThreshold

The amount of time expressed as a multiplier of the heart beat interval before a TestRequest(35=1) message is sent to
the peer when the heartbeat interval has been exceeded without receiving a message from the peer. This value may
be specified out-of-band in a rules of engagement.

3.1.26 SendingTimeThreshold

The amount of time expressed in seconds in which the SendingTime(52) value in an inbound message differs from the
system time available to the receiving FIX session processor. This value may be specified out-of-band in a rules of
engagement.

3.1.27 LogoutAckThreshold

The amount of time expressed in seconds that a FIX session processor that has transmitted a Logout(35=5) request
will wait for the Logout(35=5) acknowledgement before terminating the transport layer connection. This value may be
specified out-of-band in a rules of engagement.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 12 of 82

4 FIX session

A FIX session is a bidirectional stream of ordered messages between two peers within a continuous sequence number
series beginning with 1. A single FIX session can exist across multiple sequential (not concurrent) FIX connections,
which means that peers may intentionally or unintentionally connect and disconnect multiple times while maintaining
a single FIX session. The FIX session can be thought of as a bi-directional durable session sharing characteristics of the
guaranteed delivery and durable subscriber enterprise integration architecture patterns.

A FIX connection consists of three parts: logon process, message exchange (inclusive of resynchronization of state),
and possible logout process over a transport layer connection. A FIX connection may be concluded by the
unrecoverable loss of the transport layer, a system failure, or an application failure.

Figure 1 — Conceptual view of FIX session layer

Connecting parties shall bilaterally agree upon the time the FIX session is started and the duration of a FIX session.1 A
FIX session is often configured to correspond to a certain period of time, such as a trading day, calendar day, or a
trading session. A FIX session may extend beyond multiple periods by counterparty agreement.

The FIX session is based on an optimistic model. Normal delivery of data is assumed (i.e. no session layer
acknowledgement of individual messages) with errors in delivery identified by message sequence number gaps.

4.1 Sequence numbers

All messages sent over a FIX session shall be identified by a unique sequence number in the MsgSeqNum(34) field.

A FIX session shall start with a next expected outgoing sequence number (NextNumOut) of 1 and a next expected
incoming sequence number (NextNumIn) of 1.

A FIX session processor must maintain the NextNumOut and NextNumIn for the entire FIX session.

A FIX session processor shall persist the NextNumOut and NextNumIn in order to support FIX session recovery across
multiple FIX connections.

Resetting NextNumOut to 1 and NextNumIn to 1, for whatever reason, shall constitute the beginning of a new FIX
session.

1 Firms may document the session layer configuration using the FIX Orchestra interface specification.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 13 of 82

FIX session layer and application layer messages shall share the same sequence number space.

Each FIX session layer and application layer message sent consumes the next outbound sequence number,
incrementing NextNumOut by 1.

Each FIX session layer and application layer message received consumes the next inbound sequence number,
incrementing NextNumIn by 1.

A FIX session must always have peer1.NextNumIn <= peer2.NextNumOut and peer2.NextNumIn <=
peer1.NextNumOut to be considered in a valid and recoverable state.

4.2 Identifying the FIX session

A FIX session is identified by the unique combination of BeginString(8) + initiator CompID + acceptor CompID.

4.2.1 The FIX session profile

BeginString(8) shall be used to identify the FIX session profile or version of FIX.

These FIX session profiles are defined within this specification.

Table 1 — The FIX session profiles

FIX session
profile BeginString(8) Description

FIX.4.2 FIX.4.2 The FIX session profile for use with the FIX.4.2 application layer.

FIX4 FIX.4.4 The FIX session profile backward compatible with FIX.4.4 recommended when
counterparties will only be using a single application version during the FIX session,
such as FIX Latest.

FIXT FIXT.1.1 The FIX session profile that must be used when mixing multiple application versions
over the same FIX session. May be used with a single application version of FIX such
as FIX Latest.

LFIXT FIXT.1.1 Lightweight FIXT restricted session layer message recovery2 to simplify the protocol
while maintaining compatibility with FIXT when using LFIXT compatible model of
operation.

FIX session acceptor may be configured to support multiple FIX session profiles (or FIX versions prior to FIX.4.4) over
the same transport layer with only one FIX session profile (or FIX version prior to FIX.4.4) being used per FIX session.

The FIX session acceptor should use the incoming Logon(35=A) request BeginString(8) to identify the FIX session
profile or FIX version being requested by the initiator.

4.2.2 Identification of FIX session peers

FIX relies on alphanumeric strings known as CompIDs to identify the initiator and the acceptor of FIX messages.

Counterparties must agree to their respective CompID values, which act as an identifier for the peer.

Each message sent over a FIX session layer must contain the sending entity in SenderCompID(49) and the receiving
(destination) entity in TargetCompID(56). This requirement applies to both session layer and application layer
messages.

FIX service processors must validate the SenderCompID(49) and TargetCompID(56) of each message and ensure that it
is identical to the values present in the FIX connection Logon(35=A) message. A discrepancy in the
SenderCompID(49)+TargetCompID(56) pair should result in the termination of the FIX connection by sending a
Logout(35=A) message using the Text(58) field to indicate the error, followed by termination of the transport layer
connection.

2 The LFIXT session profile uses the same BeginString(8) value as the FIXT session profile. The use of LFIXT and its mode of operation must be agreed
upon out-of-band by counterparty agreement.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 14 of 82

4.2.3 Validation of SendingTime(52)

SendingTime(52) must be set to the time the message is transmitted by the FIX session processor, not the time the
message was queued for transmission.

SendingTime(52) must be in UTC (Universal Time Coordinated).

SendingTime(52) should be within the reasonable time of a synchronized time source of the receiving FIX session
processor. This SendingTimeThreshold is highly dependent upon the type of application using the FIX session layer.
The SendingTimeThreshold may be as low as seconds for high volume, low latency applications up to several minutes
for certain order routing applications.

The SendingTimeThreshold may be defined and communicated to counterparties out-of-band within the rules of
engagement.

The receiving peer shall transmit a Reject(35=3) message with SessionRejectReason(373) set to 10 (SendingTime
Accuracy Problem) followed by a Logout(35=5) request when the SendingTime(52) is not within a specified tolerance
of a synchronized clock.

4.2.4 Additional fields available for peer identification

The FIX session layer provides additional fields which may be used to further identify recipients within the respective
counterparties.

Each counterparty may provide a subidentifier (SenderSubID(50) and TargetSubID(57)) known as SubID.

Each counterparty may provide a location identifier (SenderLocationID(142) and TargetLocationID(143)) known as
LocationID.

The SubID and LocationID may vary across messages across the same FIX session.

The counterparties must agree upon the context and semantics of the SubID and LocationID if used.

4.3 Establishing a FIX connection

Establishing a FIX connection involves three distinct operations: creation of a transport layer connection, acceptance
with optional authentication of the initiator by the acceptor and message synchronization (initialization).

The initiator shall establish a transport layer connection with the acceptor to establish a FIX connection.

4.3.1 Transport layer requirements

FIX session layer requires that the transport layer provides ordered and lossless message delivery and full duplex
operation for the life of the transport layer connection.

FIX implementations that use the TCP/IP protocol as the transport layer must use the FIX-over-TLS (FIXS) specification
which specifies the use of Transport Layer Security (TLS) with the FIX session layer to provide transport layer
encryption.

The initiator shall send a Logon(35=A) request message to initiate a FIX connection.

The Logon(35=A) request message must always be the first message transmitted over a FIX connection. If the acceptor
receives anything other than a valid Logon(35=A) request message, an error should be logged and the transport layer
connection terminated without Logout(35=5) processing.

4.3.2 Using the TestMessageIndicator(464) to explicitly identify testing

Counterparties should populate the TestMessageIndicator(464) field with “Y” in the Logon(35=A) request and
acknowledgement when testing.

FIX counterparties should validate that the TestMessageIndicator(464) field corresponds to the environment.

If the TestMessageIndicator(464) with value “Y” is present in a Logon(35=A) message indicating a test session and the
environment is not a test environment, the peer should transmit a Logout(35=5) message with the Text(58) indicating
that the TestMessageIndicator(464) was set to “Y” and the environment is a production environment. Certain venues
support sending test messages within the production environment. Counterparties should communicate how testing

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 15 of 82

is conducted within the production environment to prevent test messages from being accepted as production
messages.

If the TestMessageIndicator(464) with value “N” is present in a Logon(35=A) message indicating a production session
and the environment is a test environment, the peer should transmit a Logout(35=5) message with the Text(58)
indicating that the TestMessageIndicator(464) was set to “N” and the environment is a test environment.

Failure to validate the TestMessageIndicator(464) against the environment may potentially lead to financial losses.

4.3.3 Application layer encryption

The use of application layer message encryption has been discouraged since the FIX.4.3 version of the FIX protocol.

EncyptionMethod(98) must be present in the Logon(35=A) message and set to “0” when application layer encryption
is not in use.

Firms may implement application layer encryption by counterparty agreement.

4.3.4 Heartbeat interval

The HeartBtInt(108) field must be present and specify the interval in seconds for generating heartbeat messages
during periods of inactivity.

The HeartBtInt(108) field must be present in the Logon(35=A) message.

The HeartBtInt(108) value must be agreed upon by the initiator and the acceptor.

The initiator and acceptor must use the same HeartBtInt(108) value within a FIX connection.

The HeartBtInt(108) value is the maximum time allowed between receipt of messages from the peer.

Each FIX session processor should implement a heartbeat interval timer. The timer should be reset upon receipt of
each message from the peer.

4.3.5 Heartbeat interval determination

The acceptor should convey the rules placed on the expected heartbeat interval via out-of-band rules of engagement3
when such rules are required by the acceptor.

There are three methods for determining the heartbeat interval:

1. Acceptor requires a specific heartbeat interval

2. Acceptor requires initiator to specify a value within a heartbeat interval range

3. Acceptor accepts the initiator specified heartbeat interval

4.3.5.1 Acceptor requires a specific heartbeat interval

The acceptor may refuse to establish a FIX connection if the HeartBtInt(108) value received on the Logon(35=A)
message sent by the initiator does not match the heartbeat interval required by the acceptor.

The acceptor must terminate the FIX session using a Logout(35=5) message when the acceptor refuses to establish a
FIX connection due to the inbound HeartBtInt(108) value not matching the expected value.

The acceptor should provide the reason for terminating the FIX connection in the Text(58) field of the Logout(35=5)
message by setting it to “Invalid HeartBtInt(108), expected value N seconds”, where N is the number of seconds
expected in the HeartBtInt(108) field on the initiator Logon(35=A) message. N shall be larger than zero.

4.3.5.2 Acceptor requires initiator specify a value within a heartbeat interval range

The acceptor may refuse to establish a FIX connection if the HeartBtInt(108) value received on the Logon(35=A)
message sent by the initiator does not fall within a heartbeat interval range required by the acceptor.

3 FIX Orchestra may be used to communicate which FIX session profile and which operating mode is being used for a FIX enabled service.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 16 of 82

The acceptor must terminate the FIX connection using a Logout(35=5) message when the acceptor refuses to establish
a FIX session due to the inbound HeartBtInt(108) value not falling within the required heartbeat interval range.

The acceptor should specify the reason for terminating the connection in the Text(58) field of the Logout(35=5)
message by setting it to “Invalid HeartBtInt(108), expected value between N and M seconds”, where N and M are the
start and end values of the range of the heartbeat interval in seconds permitted by the acceptor. N shall be larger than
zero and M shall be larger than N.

4.3.5.3 Acceptor accepts the initiator specified heartbeat interval

The acceptor may accept the heartbeat interval specified by the initiator in the HeartBtInt(108) field of the initiator
Logon(35=A) message by echoing back the heartbeat interval of the initiator in the Logon(35=0) acknowledgement.

4.3.6 Maximum message size

The maximum message length in octets that the FIX session processor (initiator) is able to receive may be specified in
the MaxMessageSize(383) field in the Logon(35=A) message sent to the peer (acceptor). The MaxMessageSize(383)
value may be used to control message fragmentation at the application layer for those application messages that
support fragmentation.

The acceptor may terminate the FIX session if the MaxMessageSize(383) received from the initiator is not sufficient.
Termination should occur by sending a Logout(35=5) message and setting the Text(58) field to “MaxMessageSize(383)
= InboundValue < required message size M” (where InboundValue is the value received from the initiator and M is the
value required by the acceptor).

The values for MaxMessageSize(383) may be different between peers. If the value received from the initiator is
sufficient for the acceptor then the acceptor responds with a Logon(35=A) message and can use the
MaxMessageSize(383) field to specify the maximum message length in octets that the acceptor is able to receive. This
value may be different from the value previously sent by the initiator. The initiator may then terminate the FIX session
as described above if the MaxMessageSize(383) received from the acceptor is not sufficient.

4.3.7 Specifying application version

Three fields are provided to identify the application version to counterparties in the Logon(35=A) message. The use of
these fields varies across FIX session profiles. For instance, these fields are not applicable to the FIX.4.2 session profile
as the FIX.4.2 session profile may only be used with the FIX 4.2 application version.

Field Definition

DefaultApplVerID(1137) The FIX application version upon which the application layer is derived.

DegaultApplExtID(1407) An extension pack that is used with the application layer.

DefaultCstmApplVerID(1408) User defined custom application version information. DefaultCstmAppVerID(1400)
may be used to identify the FIX Orchestra machine readable rules of engagement.

4.3.8 Specifying supported message types

The initiator and acceptor may specify the types of FIX messages by using the repeating group MsgTypeGrp in the
Logon(35=A) message.

4.3.9 Identification of application system and FIX session processor4

By counterparty agreement, peers may identify the application system as well as the FIX session processor (“FIX
Engine”) in use by their respective name, version, and vendor as part of the Logon(35=A) message in the
ApplicationSystemName(1603), ApplicationSystemVersion(1604), ApplicationSystemVendor(1605),
FIXEngineName(1600), FIXEngineVersion(1601), and the FIXEngineVendor(1602) fields.

4 Functionality added by EP113.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 17 of 82

4.3.10 Responding to a request to establish a FIX session

The acceptor should authenticate the identity of the initiator by examining the incoming Logon(35=A) message,
referred to as Logon(35=A) request.

The Logon(35=A) message should contain the data necessary to support the authentication method chosen by
counterparty agreement.

The following fields are available for exchanging credentials for authentication:

Table 2 — Fields in the Logon(35=A) message used for authentication

Field Use

Username(553) Clear text userid

Password(554) Clear text password - use is not recommended

NewPassword(925) Clear text new password - use is not recommended

EncryptedPasswordMethod(1400) Method of encryption used for password field

EncryptedPasswordLen(1401) Length in octets of EncryptedPassword(1402)

EncryptedPassword(1402) Encrypted password

EncryptedNewPasswordLen(1403) Length in octets of EncryptedNewPassword(1403)

EncryptedNewPassword(1404) Encrypted new password permits changing password during logon

RawDataLength(95) Length in octets of RawData(96)

RawData(96) Binary octet stream that can be used for authentication

SessionStatus(1409) may be used by counterparty agreement to communicate session status regarding authentication
on both Logon(35=A) and Logout(35=5) messages.5

The acceptor shall respond with a Logon(35=A) message to accept the FIX connection initiation when the request is
accepted, referred to as the Logon(35=A) acknowledgement.

The session acceptor should send a Logout(35=5) message to reject FIX connection initiation and provide a reason for
the rejection in the Text(58) field and then immediately terminate the transport layer connection.

The initiator should not transmit any application message until the Logon(35=A) acknowledgement has been received
from the acceptor (see the next section for further recommendations).

5 Field added in EP56

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 18 of 82

Figure 2 — FIX connection establishment

4.3.11 Initial synchronization of messages in a FIX connection

The acceptor shall compare MsgSeqNum(34) in the Logon(35=A) request received from the initiator with NextNumIn
maintained by the acceptor.

The initiator shall compare MsgSeqNum(34) in the Logon(35=A) acknowledgement received from the acceptor with
NextNumIn maintained by the initiator.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 19 of 82

If MsgSeqNum(34) is present in the incoming Logon(35=A) message and equal to NextNumIn, then normal processing
may commence over the FIX connection.

If MsgSeqNum(34) is present in the incoming Logon(35=A) message and greater than NextNumIn, then message
recovery must be performed.

If MsgSeqNum(34) is present in the incoming Logon(35=A) message and is less than NextNumIn, then a Logout(35=5)
message should be sent assuming that an error exists in the state of either the initiator or acceptor FIX session
processor, followed by a termination of the transport layer connection.

The initiator and acceptor should wait a short period of time following receipt of the Logon(35=A) message from the
counterparty before transmitting queued or new application messages to permit both sides to synchronize the FIX
session.

Alternatively, the initiator and acceptor may send a TestRequest(35=1) message and wait for the HeartBeat(35=0)
message sent in response to the TestRequest(35=1) message, before sending queued or new messages, as this
practice forces both sides to perform message synchronization.

4.3.12 Synchronization after successful logon

The following sequence diagrams show three scenarios.

1. acceptor requires retransmission of messages from initiator

2. initiator requires retransmission of messages from acceptor

3. both acceptor and initiator require retransmission of messages

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 20 of 82

Figure 3 — ResendRequest(35=2) sent by acceptor after Logon(35=A) acknowledgement

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 21 of 82

Figure 4 — ResendRequest(35=2) sent by initiator after Logon(35=A) acknowledgement

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 22 of 82

Figure 5 — ResendRequest(35=2) sent by initiator and acceptor after Logon(35=A) acknowledgement

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 23 of 82

4.4 Extended features for FIX session and FIX connection initiation

4.4.1 Using NextExpectedMsgSeqNum(789) to synchronize a FIX session

The FIX session processors may use the NextExpectedMsgSeqNum(789) field in the Logon(35=A) message to
synchronize a FIX session by counterparty agreement defined in the FIX session rules of engagement6.

The time required to resume a FIX session over a new FIX connection can be reduced by alerting the peer to the next
message that is expected using NextExpectedMsgSeqNum(789) in the Logon(35=A) message. Any missing messages
can be retransmitted by the peer without requiring to use ResendRequest(35=2) messages.

A FIX session may implement next expected sequence number processing to reduce the amount of message
retransmission needed to re-establish a FIX session by counterparty agreement specified in the rules of engagement.

Each FIX session processor may populate the NextExpectedMsgSeqNum(789) with the next message sequence
number expected from its peer on the Logon(35=A) when establishing a FIX connection.

Peers should not generate a ResendRequest(35=2) message based on MsgSeqNum(34) of the incoming Logon(35=A)
message but should expect any gaps to be filled automatically via the following process.

The receiving FIX session processor receiving a Logon(35=A) message with NextExpectedMsgSeqNum(789) present
shall compare the value of NextExpectedMsgSeqNum(789) with NextNumOut.

• If the received NextExpectedMsgSeqNum(789) is equal to NextNumOut, proceed sending new messages
beginning with that number.

• If the received NextExpectedMsgSeqNum(789) is less than NextNumOut, perform message recovery for
messages starting with the message with MsgSeqNum(34) equal to the NextExpectedMsgSeqNum(789)
through to the message with MsgSeqNum(34) equal to NextNumOut - 1.

• If the received NextExpectedMsgSeqNum(789) is greater than NextNumOut, send a Logout(35=5) message
to end the session with the Text(58) field populated explaining that “NextExpectedMsgSeqNum(789) >
than last message sent”.

6 FIX Orchestra may be used to communicate which FIX session profile and which operating mode is being used for a FIX enabled service.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 24 of 82

Figure 6 — Using NextExpectedMsgSeqNum(789) to synchronize the session during the logon process

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 25 of 82

4.4.2 Using ResetSeqNumFlag(141) to reset FIX session for 24 hour connectivity

The FIX session may be reset to NextNumIn=1 and NextNumOut=1 over an active FIX session. This capability is
provided for continuously operating markets that need to periodically reset the FIX session. When using the
ResetSeqNumFlag(141) to maintain 24 hour connectivity and establish a new set of sequence numbers, the process
should be as follows.

Counterparties must agree to the time of day when the FIX session reset will be initiated.

Counterparties must agree which peer will initiate the FIX session reset.

The peer that initiates the FIX session reset may send a TestRequest(35=1) message and wait for the HeartBeat(35=0)
response to ensure that there are no message gaps prior to sending a Logon(35=A) message to reset the FIX session.

The peer initiating the FIX session reset should set its NextNumIn to 1 and NextNumOut to 1, then send a Logon(35=A)
message with ResetSeqNumFlag(141) set to “Y” and MsgSeqNum(34) set to 1.

The peer receiving the Logon(35=A) message should set its NextNumIn to 2 and NextNumOut to 1, then send a
Logon(35=A) acknowledgement with ResetSeqNumFlag(141) set to “Y” and with MsgSeqNum(24) set of 1.

Upon completion of the session reset, both peers must have NextNumIn = 2 and NextNumOut = 2.

If the peer is not configured to accept resetting of an inbound session the peer should send a Logout(35=5) with
Text(58) indicating that resetting the sequence number is not supported and then terminate the transport layer
connection.

4.4.3 Using ResetSeqNumFlag(141) to reset FIX session during FIX connection establishment7

The initiator of a FIX session may reset the FIX session upon initial logon via sending the Logon(35=A) with
ResetSeqNumFlag(141) set to “Y”.

Counterparties must agree to support the reset of a FIX session during FIX connection establishment.

Operational risks, such as order overfills, could occur if both parties are not configured to support resetting the FIX
session upon initial logon. Users of the FIX session layer are warned to take special care when permitting the FIX
sessions to be reset upon FIX connection establishment.

If the acceptor is not configured to accept resetting of a FIX session during FIX connection establishment, the acceptor
should send a Logout(35=5) with Text(58) indicating that resetting the sequence number upon FIX connection
establishment is not supported then terminate the transport layer connection.

4.4.4 Using initiator state to restore acceptor session state8

An acceptor may re-establish its state via the exchange of NextExpectedMsgSeqNum(789).

This should only be used for FIX service offerings where application message recovery is performed by the application
layer instead of the FIX session layer.

The state of the FIX session is assumed to be:

• the acceptor FIX session processor NextNumOut is unknown and NextNumIn is unknown.

• the initiator FIX session processor has maintained and knows its state (the values of NextNumIn and
NextNumOut) between FIX connections.

Acceptor state may be recovered when NextExpectedMsgSqNum(789) is present in the Logon(35=A) request by:

• The acceptor may reconstruct its session state solely based upon the Logon(35=A) request from an
initiator if NextExpectedMsgSeqNum(789) is present in the Logon(35=A) request.

• The acceptor should set its NextNumIn to the MsgSeqNum(34) + 1 from the Logon(35=A) request and set
its NextNumOut to the NextExpectedMsgSeqNum(789) from the Logon(35=A) request.

7 Functionality added by EP124.
8 Functionality added by EP124.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 26 of 82

• The acceptor should then send a SequenceReset(35=4) message with GapFillFlag(123) set to “Y” and
NewSeqNo(36) set to NextNumOut+1 and AppLevelIndicator(1744) set to “1” (application layer recovery is
needed) to inform the initiator that application messages will need to be recovered.

Acceptor state may be recovered when NextExpectedMsgSeqNum(789) is not present in the Logon(35=A) request by:

• The acceptor may reconstruct its session state based upon the Logon(35=A) request from an initiator by
setting its NextNumIn to the MsgSeqNum(34) + 1 from the Logon(35=A) request and setting its
NextNumOut to 1 when the NextExpectedMsgSeqNum(789) is not present in the Logon(35=A) request.

• The initiator should respond to the Logon(35=A) acknowledgement with a Logout(35=5) with
SessionStatus(1409) set to 9 (received MsgSeqNum(34) is too low) and NextExpectedMsgSeqNum(789) set
to the initiator’s NextNumIn, followed by terminating the transport layer connection.

• The acceptor should set its NextNumOut to the NextExpectedSeqNum(789) value from the Logout(35=5)
received from the initiator.

• The initiator should then transmit a new Logon(35=A) request with MsgSeqNum(34) set to its NextNumOut
value.

• The acceptor should respond with Logon(35=A) acknowledgement with the MsgSeqNum(34) set to the
NextNumOut value obtained from the previous initiator Logout(35=5).

• The acceptor should then send a SequenceReset(35=4) message with GapFillFlag(123) set to “Y” and
NewSeqNo(36) set to NextNumOut+1 and AppLevelIndicator(1744) set to “1” (application layer recovery is
needed) to inform the initiator that application messages may need to be recovered.

4.5 Message exchange during a FIX connection

After establishing a FIX connection within a FIX session and synchronizing messages, normal message exchange
begins.

The initiator and acceptor may send a TestRequest(35=1) message and wait for the HeartBeat(35=0) message sent in
response to the TestRequest(35=1) message, before sending queued or new messages, to further confirm that the FIX
connection is established.

The initiator and acceptor shall validate incoming FIX messages to ensure proper tagvalue encoding.

The integrity of message data content shall be verified for message length and the tagvalue encoding checksum
according to the FIX tagvalue encoding specification.

The initiator and acceptor shall synchronize their messages and detect gaps by comparing the MsgSeqNum(34) field in
each message received from its peer with the NextNumIn it maintains and increments after successful receipt of each
message.

A FIX session processor that encounters a sequence number gap shall perform message recovery.

4.5.1 FIX connection keep alive (heartbeat)

The FIX session processor must send a HeartBeat(35=0) message to the peer during periods of inactivity, ensuring that
the HeartBeat(35=0) message will be received by the peer within the heartbeat interval.

If a FIX session processor does not receive a message within the heartbeat interval, test request processing should be
initiated.

4.5.2 Garbled message processing

A message shall be considered garbled if any of the following occur as a result of encoding, decoding, or transmission
errors:

• BeginString(8) is not the first tag in a message or is not one of the defined FIX session profile identifiers
(“8=FIX.4.4”, “8=FIXT.1.1”).

• BodyLength(9) is not the second tag in a message or does not contain the correct byte count.

• MsgType(35) is not the third tag in a message.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 27 of 82

• Checksum(10) is not the last tag or contains an incorrect value.

The FIX session layer presumes that a garbled message is received due to a transmission error rather than a FIX
session processor defect and should be recoverable from the peer.

The receiving FIX session processor must disregard the garbled message and not increment NextNumIn.

The FIX session processor should log each encountered garbled message to assist in problem detection and diagnosis.

Receipt of the next valid FIX message after a garbled message was ignored will result in the detection of a sequence
gap as the MsgSeqNum(34) will be greater than NextNumIn which should then cause the receiving FIX session
processor to initiate message recovery.

It is recommended that FIX session processors implement logic to recognize the possible infinite retransmission loop,
which may be encountered when a garbled message is repeatedly retransmitted due to a fault in the peer FIX session
processor.

4.5.3 Missing sequence number

If MsgSeqNum(34) is missing, a Logout(35=5) message should be sent, terminating the FIX connection with the
Text(58) field describing the missing field, as this likely indicates a serious application error that is likely only
circumvented by software modification.

4.5.4 Rejecting invalid messages

Incoming messages should be rejected using the Reject(35=3) message when:

• an incoming message is not garbled but does not contain the appropriate required fields may be rejected
by sending a Reject(35=3) message to the peer.

• MsgType(35) of the incoming message is unknown or not supported.

As a rule, messages should be forwarded to the trading application for business level rejections whenever possible
instead of being rejected at the session layer.

Rejected messages must be logged and NextNumIn incremented by 1.

Generation and receipt of a Reject(35=3) message indicates a serious error that could be the result of faulty logic or
noncompliance with the rules of engagement in either peer.

A diagnostic message describing the error should be provided in the Text(58) field of the Reject(35=3) message and
the SessionRejectReason(373) field set to the appropriate reject reason.

The MsgSeqNum(34) from the message being rejected should be returned in RefSeqNum(45).

The RefTagID(371) should be set to the tag of the field associated with the reject reason.

The RefMsgType(372) field should be the MsgType(35) of the rejected message.

If the sending application chooses to retransmit the rejected message, the message being resent must be assigned a
new MsgSeqNum(34) and sent with PossResend(97) set to “Y”.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 28 of 82

Figure 7 — Session layer reject using Reject(35=3) due to invalid message received

4.5.5 Test Request Processing

A TestRequest(35=1) is sent to determine the status of the peer FIX session processor.

The TestReqID(112) field must be present in the TestRequest(35=1) message.

The recipient of a TestRequest(35=1) message must respond by sending a HeartBeat(35=0) message with
TestReqID(112) present and set to the TestReqID(112) value from the TestRequest(35=1) message.

Note: Depending upon the implementation of the FIX session processor it may be possible to receive HeartBeat(35=0)
messages from the peer even though the peer FIX session processor is not functioning properly. A TestRequest(35=1)
may be sent to determine if the peer FIX session processor is still responsive. Not receiving a valid response to the
TestRequest(35=1), which is a HeartBeat(35=0) message containing the value of the TestReqID(112) from the
TestRequest(35=1) message, provides some evidence that the peer is not functioning properly.

Failure to receive a HeartBeat(35=0) response with TestReqID(112) present and set to the value from the
TestRequest(35=1) message is considered an error. The FIX connection should be terminated by sending a
Logout(35=5) message with the Text(58) field stating that the session was terminated due to lack of a response to a
TestRequest(35=1) message, followed by terminating the transport layer connection.

The period of time that the FIX session processor should wait for the HeartBeat(35=0) response should be defined as a
TestRequestThreshold multiplied by the heartbeat interval.

A reasonable TestRequestThreshold is anywhere from 1.2 to 2.0 depending on latency sensitivity of the application
using the FIX session layer.

The TestRequestThreshold may be specified by counterparty agreement or specified in the rules of engagement9.

9 The FIX Orchestra Interface specification may be used to specify the TestRequestThreshold.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 29 of 82

The operator of the FIX session processor may send a TestRequest(35=1) message at any time during a FIX connection.
The following figure shows an example of a TestRequest(35=1) message issued to determine if the peer is still
responsive.

Figure 8 — Issuing a TestRequest(35=1) to determine if peer is still responsive

4.6 FIX connection termination

Either the initiator or the acceptor may send a Logout(35=5) message to request termination of a FIX connection.
Normal termination of the message exchange session shall be completed via the exchange of Logout(35=5) messages.
Termination by other means should be considered an abnormal condition and dealt with as an error. FIX connection
termination without receiving a Logout(35=5) message should treat the peer as logged out.

A FIX session processor may send a TestRequest(35=1) message before sending the Logout(35=5) message to force a
heartbeat from the other side. This helps to ensure that there are no sequence number gaps, which indicate that a
ResendRequest(35=2) message is necessary before completing the session.

The Logout(35=5) initiator must wait for the peer to respond with a Logout(35=5) acknowledgement message before
terminating the FIX connection. This gives the peer a chance to perform any gap fill operations that may be necessary.
Once the messages from the ResendRequest(35=2) message have been received, the peer should issue the
Logout(35=5) message.

The Logout(35=5) initiator should terminate the FIX connection if the peer does not respond within a reasonable time
frame. Twice the value specified in the HeartBtInt(108) field of the Logon(35=A) message is recommended.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 30 of 82

4.6.1 Normal logout processing

Figure 9 — Successful Logout scenario

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 31 of 82

4.6.2 Logout without acknowledgement from peer

Figure 10 — Logout(35=5) acknowledgement not received

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 32 of 82

4.6.3 Logout with retransmission of missed messages

Figure 11 — Processing of ResendRequest(35=2) messages before Logout(35=5) acknowledgement

The impact of a FIX connection termination on the application layer is left to the application layer; it is undefined in
the FIX session layer.

4.6.4 When to terminate a FIX connection by terminating the transport layer connection instead of
sending a Logout(35=5)

In general, a Logout(35=5) message should always be sent prior to shutting down a connection. If it is being sent due
to an error condition, the Text(58) field of the Logout(35=5) should provide a descriptive reason, so that operational
support of the remote FIX system can diagnose the problem. There are exceptions, when it is recommended that a
Logout(35=5) message not be sent, these include:

• The FIX session should be immediately terminated by terminating the transport layer connection without
sending a Logout(35=5) message when the BeginString(8), SenderCompID(49), TargetCompID(56), or IP
address in the Logon(35=A) request of the session initiator is invalid. This logon attempt could be an
unauthorized access attempt. Terminating the connection without transmitting a Logout(35=5) message

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 33 of 82

avoids divulging information about the SenderCompID(49)/TargetCompID(56) and the version of FIX being
used over the transport layer.

• If, during a logon, one receives a second connection attempt while a valid FIX session is already underway
for that same SenderCompID(49), the session acceptor should immediately terminate the second
connection attempt and not send a Logout(35=5) message. Sending a Logout(35=5) message runs the risk
of interfering with and possibly adversely affecting the current active FIX connection. For example, sending
a Logout(35=5) message should consume a sequence number that would cause an out of sequence
condition for the established FIX session.

In all other cases, if sending a Logout(35=5) message does not create risk or violate security, it should be sent with a
descriptive text message in the Text(58) field.

4.7 Extended features for FIX connection Termination

4.7.1 Using NextExpectedMsgSeqNum(789) when terminating FIX connection due to invalid
MsgSeqNum(34)10

When a FIX session processor receives a Logon(35=A) message with a MsgSeqNum(34) that is less than the
NextNumIn from a peer, a Logout(35=5) message may be sent that includes the NextExpectedMsgSeqNum(789) set to
NextNumIn and the SessionStatus(1409) set to 9 (received MsgSeqNum(34) is too low). This approach permits the
peer to reset their NextNumOut to reestablish the FIX session.

When a FIX session processor receives a Logon(35=A) message with a NextExpectedMsgSeqNum(789) value that is
greater than NextNumOut from a peer, a Logout(35=5) message may be sent that includes the SessionStatus(1409)
set to 10 (received NextExpectedMsgSeqNum(789) is too high), then terminate the transport layer connection. This
approach allows the peer to reset their NextNumIn to the MsgSeqNum(34) present in the Logout(35=A) message + 1.

When a FIX session processor receives a Logon(35=A) message with a MsgSeqNum(34) that is less than the
NextNumIn and a NextExpectedMsgSeqNum(789) value that is greater than NextNumOut from a peer, a Logout(35=5)
message may be sent that includes SessionStatus(1409) equal 9 (received MsgSeqNum(34) is too low) and the
NextExpectedMsgSeqNum(789) set to NextNumIn, then terminate the transport layer connection. This approach
allows the peer to reset their NextNumIn to the MsgSeqNum(34) present in the Logout(35=5) message + 1 and the
NextNumOut reset to the NextExpectedMsgSeqNum(789) value.

4.8 Message recovery

A message gap occurs when the MsgSeqNum(34) of an incoming message is greater than the NextNumIn maintained
by the FIX session processor.

During initialization of a FIX connection or at any time during the FIX connection, a message gap may occur.

When the MsgSeqNum(34) on an inbound message is greater than NextNumIn, the FIX session processor must
perform message recovery processing as this is an indication that there were messages sent by the peer that were not
received or may have been garbled during transmission.

4.8.1 Ordered message processing

The FIX protocol assumes complete ordered delivery of messages processed in MsgSeqNum(34) order.

FIX session processors must detect gaps in the sequence of MsgSeqNum(34) values by maintaining the next expected
sequence number NextNumIn.

If the MsgSeqNum(34) of an incoming message is greater than NextNumIn, then the receiving FIX session processor
should request the peer to retransmit messages following the Request retransmission of messages specifications.

The FIX session should be terminated if the incoming message MsgSeqNum(34) is less than NextNumIn and
PossDupFlag(43) is not set to “Y”, except if the message is the SequenceReset(35=4) with the GapFillFlag(123) set to
“N” (Sequence Reset). A Logout(35=5) message should be sent with the Text(58) field set to indicate that the value in

10 Functionality added by EP124.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 34 of 82

MsgSeqNum(34) is less than NextNumIn when PossDupFlag(43) is not set to “Y” and SessionStatus(1409) set to 9
(received MsgSeqNum(34) is too low.), followed by terminating the transport layer connection.

4.8.2 Request retransmission of messages

There are two alternative approaches to resolving message sequence number gaps.

The two approaches are:

• Request all messages subsequent to the last message received.

 For example, if the receiver misses the second of five messages, the application could ignore messages 3
through 5 and generate a resend request for messages 2 through 5, or, preferably 2 through 0 (where 0
represents all messages after message 2).

Figure 12 — Using ResendRequest(35=2) message to request missed messages and subsequent messages

• Request only the specific messages missed while maintaining an ordered list of all newer messages.

 Using the above example, messages 3 through 5 would be saved for later processing and a
ResendRequest(35=2) message would be sent only for message 2.

In both cases, messages 3 through 5 should not be processed before message 2.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 35 of 82

Figure 13 — Using ResendRequest(35=2) message to request only the missed messages

The ResendRequest(35=2) message with BeginSeqNo(7) and EndSeqNo(16) present should be sent to the peer FIX
session processor to request missing messages when a gap is detected.

The ResendRequest(35=2) may be used to request retransmission of a single message, a range of messages or all
messages subsequent to a particular message.

The receiving FIX session processor must process incoming messages in MsgSeqNum(34) order.

The ResendRequest(35=2) message may be used to specify which messages require retransmission in the following
ways:

• To request a single message: Both BeginSeqNo(7) and EndSeqNo(16) are set the MsgSeqNum(34) of the
missing message.

• To request a range of messages: BeginSeqNo(7) is set to the MsgSeqNum(34) of the first message of the
range of missing messages and EndSeqNo(16) is set to the MsgSeqNum(34) of the last message of the
range of missing messages.

• To request all messages subsequent to a particular missing message: BeginSeqNo(7) is set to the
MsgSeqNum(34) of the first message of range and EndSeqNo(16) is set to 0. Zero is used to specify all
messages after the message with MsgSeqNum(34)=BeginSeqNo(7)11.

4.8.3 Responding to a ResendRequest(35=2) message

Upon receipt of a ResendRequest(35=2) message, the resender shall respond by either initiating a normal gap fill
process or, in exceptional circumstances, by forcing a reset of the sequence number. In either case, the resender
assumes responsibility for the results of the decision to retransmit or not retransmit messages.

11 Setting EndSeqNo(16) to 0 has been the recommended approach since FIX.4.2.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 36 of 82

The peer receiving the ResendRequest(35=2) may choose not to retransmit certain application messages. For
instance, if orders or quotes require retransmission, the sender may choose not to retransmit them because too much
time has elapsed, causing the orders to become stale or no longer acceptable due to a change in market state.

The SequenceReset(35=4) message with GapFillFlag(123) set to “Y” (gap fill) must be used to skip messages that a
sender does not wish to retransmit in order to eliminate all gaps.

Figure 14 — ResendRequest(35=2) with gap fill processing

4.8.4 Possible duplicates

When a FIX session processor is unable to determine if a message was successfully received at its intended destination
or when responding to a ResendRequest(35=2) message, a possible duplicate message is generated. The message will
be a retransmission (with the same sequence number) of the application data in question with the PossDupFlag(43)
included and set to “Y”. It is the responsibility of the receiving firm to properly respond to the message with
PossDupFlag(43) set to “Y” by determining if the message was previously processed.

Any message resent in response ResendRequest(35=2) message must contain the PossDupFlag(43) field set to “Y”.

Messages lacking the PossDupFlag(43) field or with the PossDupFlag(43) field set to “N” shall be treated as an original
transmission.

The FIX session processor retransmitting a message with the PossDupFlag(43) set to “Y” must modify the following
fields:

• SendingTime(52) set to the current sending time

• OrigSendingTime(122) set to the SendingTime(52) from the original message

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 37 of 82

• Recalculate the BodyLength(9)

• Recalculate the CheckSum(10)

If the message is encrypted, SecureDataLen(90) and SecureData(91) may also require re-encryption and re-encoding12.

4.8.5 Gap fill process

The peer responding to a ResendRequest(35=2) message shall retransmit messages requested by the peer in message
sequence number order, with the original sequence numbers and PossDupFlag(43) set to “Y”.

The resender shall not retransmit the following session layer message types:

• Logon(35=A)

• Logout(35=5)

• ResendRequest(35=2)

• HeartBeat(35=0)

• TestRequest(35=1)

• SequenceReset(35=4)

The responding peer shall send a SequenceReset(35=4) message with GapFillFlag(123) set to “Y” (gap fill) for each
session layer or application layer message not retransmitted.

Reject(35=3) and XMLnonFIX(35=n) are the only session messages which may be retransmitted.

The responding peer may choose, by counterparty agreement, not to retransmit all application messages. The
definition of which application messages are retransmitted is defined in the application layer.

A continuous sequence of messages not being retransmitted should be skipped over using a single
SequenceReset(35=4) message with GapFillFlag(123) set to “Y” and MsgSeqNum(34) set to the sequence number of
the first skipped message and NewSeqNo(36) set to the next sequence number after the sequence number of the last
message to be skipped (or “gap filled over”).

NewSeqNo(36) must always be set to the value of the next sequence number to be expected by the peer immediately
following the messages being skipped.

The SequenceReset(35=4) message with GapFillFlag(123) set to “Y” (gap fill) may also be used to skip application
messages that the sender chooses not to retransmit (for example, aged orders).

4.8.5.1 Example using SequenceReset(35=4) to gap fill over multiple messages

The following example is provided to show how SequenceReset(35=4) should be used to gap fill over messages in
response to a ResendRequest(35=2).

In this example a ResendRequest(35=2) is received with BeginSeqNo(7) set to 5 and EndSeqNo(16) set to 0 (meaning
all subsequent messages following 5). Messages with MsgSeqNum(34) equal to 8, 10, 11 are application messages.
Messages 5-7 and 9 are session layer messages. Only messages 8, 10, and 11 should be retransmitted.

12 The use of SecureData(91) and its associated length field SecureDataLen(90) were deprecated with the introduction of the FIXT.1.1 Session Layer
specification. The use of application layer encryption is still supported by counterparty agreement.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 38 of 82

Figure 15 — Example using the SequenceReset(35=4) to gap fill over multiple messages.

4.8.6 Sequence reset

A FIX session processor may send a SequenceReset(35=4) message with GapFillFlag(123) set to “N” (Reset) and
PossDupFlag(43) set to “Y” to force sequence number synchronization in the peer.

The firm sending the SequenceReset(35=4) with GapFillFlag(123) set to “N” is responsible for the results that occur at
the application layer caused by resetting the sequence number and not retransmitting messages requested to be
resent by the peer.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 39 of 82

Figure 16 — Performing a sequence reset instead of gap fill in response to a ResendRequest(35=2)

4.8.7 Processing inbound possible duplicate messages (PossDup(43) set to “Y”)

All FIX implementations must monitor incoming messages to detect inadvertently retransmitted session layer
messages (PossDupFlag(43) set to “Y”, indicating a retransmission).

A FIX session processor, upon receipt of an inadvertently (or improperly) retransmitted session layer message as
identified by the PossDupFlag(43) set to “Y”, should perform sequence number processing (increment NextNumIn)
only and avoid processing the session layer message.

A message received with the PossDupFlag(43) set to “Y” should be ignored when a message with the same
MsgSeqNum(34) was previously processed.

4.8.8 Processing gaps when receiving FIX session layer messages

Gaps detected in message sequence numbers must be processed differently for certain FIX session layer messages.
The table below lists the actions to be taken when the incoming FIX session layer message has a MsgSeqNum(34) that
is greater than NextNumIn.

Table 3 — Response by message type

Message type received Action to be taken on sequence number mismatch MsgSeqNum(34) > NextNumIn

Logon(35=A) Must always be the first message transmitted. Authenticate and accept the
connection. After sending a Logon(35=A) acknowledgement, send a
ResendRequest(35=2) message.

Logout(35=5) request Send ResendRequest(35=2) message requesting missing messages, receive and process
retransmission of missing messages and gap fills, then send the Logout(35=5)
acknowledgement message which serves as a confirmation of the Logout request. DO
NOT terminate the session. The Logout(35=5) requestor should the terminate the
transport layer connection.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 40 of 82

Message type received Action to be taken on sequence number mismatch MsgSeqNum(34) > NextNumIn

The only exception to the “do not terminate the session” rule is for an invalid
Logon(35=5) request. The session acceptor has the right to send a Logout(35=5)
message and terminate the transport layer connection immediately. This minimizes the
threat of unauthorized connection attempts.

ResendRequest(35=2) Perform the requested retransmission then send a ResendRequest(35=2) message
requesting missing messages, receive and process the retransmission of missing
messages and gap fills.

SequenceReset(35=4)
(GapFillFlag(123)=N)

Reset: Ignore the incoming sequence number. The NewSeqNo(36) field of this message
will contain the sequence number of the next message to be transmitted.

SequenceReset(35=4)
(GapFillFlag(123)=Y)

Gap fill: Send a ResendRequest(35=2). These messages behave similarly to
SequenceReset(35=4) messages with GapFillFlag(123) set to “N”. However, it is
important to ensure that no messages have been inadvertently skipped over. This
means that these messages must be received in sequence. An out of sequence
SequenceReset(35=4) message with GapFillFlag(123) set to “Y” is an abnormal
condition.

All other messages Perform gap fill operations.

4.9 Resending an unacknowledged application message

The application layer is responsible for the detection and proper handling of duplicate application messages.

The FIX session layer does not initiate a resend of an application message nor does the FIX session layer detect
duplication application messages.

The application layer may resend a message if it has not received an application layer acknowledgement for that
message.

The amount of time allowed to elapse before resending the message may be specified by counterparty agreement in a
rules of engagement.

The application layer may use the PossResend(97) set to “Y” field in the StandardHeader component along with other
fields in an application message to identify duplication application messages.

The use or non-use of the PossResend(97) field when resending application messages should be documented in the
rules of engagement.

The resent application layer message shall consume the next value of NextNumOut resulting in a new
MsgSeqNum(34) for the application message.

The FIX session processor shall treat the resent message as a new message.

The FIX session processor must pass the PossResend(97) field to the application layer when it is present in an
application message.

The use of a globally unique persistent identifier that enforces idempotent behavior at the application layer may be
used as an alternative to sending a PossResend(97) field by counterparty agreement.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 41 of 82

Figure 17 — Application layer resend using PossResend(97)

4.9.1 The difference between application layer resend and session layer retransmission

The purpose of the following diagram is to visually show the difference between an application using the
PossResend(97) value of a previously unacknowledged application message and a FIX session processor retransmitting
messages that may not have been received by its peer as a response to a ResendRequest(35=2) message from that
peer.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 42 of 82

Figure 18 — The difference between application layer resend and session layer retransmission

4.10 FIX session state matrix

Precedence State Initiator Acceptor Description

1 Disconnected – No
Connection Today

Y Y Currently disconnected, have not attempted to
establish a connection “today”, and no
MsgSeqNum(34) has been consumed (next
connection “today” will start at MsgSeqNum(34) of
1).

2 Disconnected –
Connection Today

Y Y Currently disconnected, have attempted to
establish a connection “today” and thus
MsgSeqNum(34)has been consumed (next
connection “today” will start at MsgSeqNum(34) of
(last + 1)).

3 Detect Broken Network
Connection

Y Y While connected, detect a broken network
connection (e.g. TCP socket closed). Disconnect
the network connection and “shutdown”
configuration for this session.

4 Awaiting Connection N Y Session acceptor Logon awaiting network
connection from counterparty.

5 Initiate Connection Y N Session initiator Logon establishing network
connection with counterparty.

6 Network Connection
Established

Y Y Network connection established between both
parties.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 43 of 82

Precedence State Initiator Acceptor Description

7 Initiation Logon(35=A)
Sent

Y N Session initiator Logon send Logon(35=A) message.

*** Exception: 24hr sessions.

8 Initiation Logon(35=A)
Received

N Y Session acceptor Logon receive counterparty’s
Logon(35=A) message.

*** Exception: 24hr sessions.

9 Initiation Logon(35=A)
Response

N Y Session acceptor Logon respond to counterparty’s
Logon(35=A) message with Logon(35=A) message
to handshake.

10 Handle
ResendRequest(35=2)

Y Y Receive and respond to counterparty’s
ResendRequest(35=2) sending requested
messages and/or SequenceReset(35=4) gap fill
messages for the range of MsgSeqNum(34)
requested. Updated to include rejecting
ResendRequest(35=2) received with
MsgSeqNum(34) that is <= LastSeqNum processed.

11 Receive
MsgSeqNum(34) Too
High

Y Y Receive too high of MsgSeqNum(34) from
counterparty, queue message, and send
ResendRequest(35=2).

12 Awaiting/ Processing
Response to
ResendRequest(35=2)

Y Y Process requested MsgSeqNum(34) with
PossDupFlag(43)=Y resent messages and/or
SequenceReset(35=4) gap fill messages from
counterparty. Queue incoming messages with
MsgSeqNum(34) too high.

13 No messages received in
Interval

Y Y No inbound messages (non-garbled) received in
(HeartBtInt(108) + “reasonable period of time”),
send TestRequest(35=1).

14 Awaiting/ Processing
Response to
TestRequest(35=1)

Y Y Process inbound messages. Reset heartbeat
interval-related timer when ANY inbound message
(non-garbled) is received.

15 Receive Logout(35=5)
message

Y Y Receive Logout(35=5) message from counterparty
initiating logout/disconnect. If MsgSeqNum(34)
too high, send ResendRequest(35=2). If sent, wait
a reasonable period of time for complete response
to ResendRequest(35=2). Note that depending
upon the reason for the Logout(35=5), the
counterparty may be unable to fulfill the request.
Send Logout(35=5) message as response and wait
a reasonable period of time for counterparty to
disconnect the network connection. Note that
counterparty may send a ResendRequest(35=2)
message if Logout(35=5) message response has
MsgSeqNum(34) too high and then re-initiate the
Logout(35=5) process.

16 Initiate Logout(35=5)
Process

Y Y Identify condition or reason to gracefully
disconnect (e.g. end of “day”, no response after
multiple TestRequest(35=1) messages, too low
MsgSeqNum(34), etc.). Send Logout(35=5)
message to counterparty. Wait a reasonable

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 44 of 82

Precedence State Initiator Acceptor Description

period of time for Logout(35=5) response. During
this time, handle “new” inbound messages and/or
ResendRequest(35=2) messages if possible. Note
that some logout/termination conditions (e.g. loss
of database/message safe-store) may require
immediate termination of the network connection
following the initial send of the Logout(35=5)
message. Disconnect the network connection and
“shutdown” configuration for this session.

17 Active/Normal Session Y Y Network connection established, Logon(35=A)
message exchange successfully completed,
inbound and outbound MsgSeqNum(34) are in
sequence as expected, and HeartBeat(35=0) or
other messages are received within
(HeartBtInt(108) + “reasonable period of time”).

18 Waiting for a
Logon(35=A)

Y N Session initiator waiting for session acceptor to
send back a Logon(35=A) acknowledgement.

4.10.1 FIX logon process state transition diagram

Session Initiator
(e.g. buyside)

Action

Session Acceptor
(e.g. sellside)

Action

Session Initiator
(e.g. buyside)

State

Session Acceptor
(e.g. sellside)

State

Start Disconnected – No
Connection Today

Awaiting Connection

 Disconnected –
Connection Today

Connect Initiate Connection Awaiting Connection

 (Possible) Detect Broken
Network Connection

 Accept Connection Network Connection
Established

Network Connection
Established

Initiate Logon(35=A) Initiation Logon(35=A)
Sent

Network Connection
Established

 Receive Initiation
Logon(35=A)

Initiation Logon(35=A)
Sent

Initiation Logon(35=A)
Received

 Send Initiation
Logon(35=A) Response

Initiation Logon(35=A)
Sent

Initiation Logon(35=A)
Response

(Possible) Initiate
Logout(35=5) Process (e.g. if
MsgSeqNum(34) too low)

(Possible) Receive
MsgSeqNum(34) Too High

 (Possible) Send
ResendRequest(35=2)

 Initiation Logon(35=A)
Response

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 45 of 82

Session Initiator
(e.g. buyside)

Action

Session Acceptor
(e.g. sellside)

Action

Session Initiator
(e.g. buyside)

State

Session Acceptor
(e.g. sellside)

State

(Possible) Receive
MsgSeqNum(34) Too High

Receive Initiation
Logon(35=A) Response

 (Possible) Active/Normal
Session

(Possible) Initiate
Logout(35=5) Process
(e.g. if MsgSeqNum(34)
too low)

Initiation Logon(35=A)
Response

(Possible) Send
ResendRequest(35=2)

 (Possible) Active/Normal
Session

(Possible) Receive
MsgSeqNum(34) Too
High

(Possible) Active/Normal
Session

(Possible) Handle
ResendRequest(35=2)

 Active/Normal Session Active/Normal Session

4.10.2 FIX logout process state transition diagram

Logout Initiator Action Logout Acceptor Action
Logout Initiator
State

Logout Acceptor
State

Start Active/ Normal Session Active/Normal Session

 No Messages Received in
Interval

No Messages Received in
Interval

 Awaiting/ Processing
Response to
TestRequest(35=1)

- Initiation Logon(35=A)
Sent
- Awaiting/Processing
Response to
TestRequest(35=1)
- Awaiting validation of
logon
- Receive MsgSeqNum(34)
Too High
- Awaiting/Processing
Response to
ResendRequest(35=2)
- Initiate Logout(35=5)
Process
- Waiting for a Logon(35=A)
acknowledgement

Send Logout(35=5)
Request

 Logout Pending

 Receive Logout(35=5)
Request

Logout Pending Logout Pending

(Possible) Receive
MsgSeqNum(34) Too High

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 46 of 82

Logout Initiator Action Logout Acceptor Action
Logout Initiator
State

Logout Acceptor
State

 Send Logout(35=5)
Response

Logout Pending Awaiting Disconnect

 (Possible) Send
ResendRequest(35=2)

Logout Pending (Possible) Awaiting /
Processing Response to
ResendRequest(35=2)

(Possible) Receive
ResendRequest(35=2)

 (Possible) Awaiting /
Processing Response to
ResendRequest(35=2)

(Possible) Awaiting
Response to
ResendRequest(35=2)

Receive Logout(35=5)
Response

 Disconnected – Connection
Today

Awaiting Disconnect

Disconnect Disconnected – Connection
Today

Disconnected – Connection
Today

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 47 of 82

5 FIX session profiles

The following session profiles are defined within the standard. Each session profile defines a standardized use of the
FIX session layer for a specific context primarily related to application version usage.

5.1 FIX.4.2 session profile

FIX.4.2 is the FIX session profile that is used with the FIX 4.2 application layer. The FIX 4.2 application layer may use
fields from subsequent versions of FIX.

The FIX.4.2 session profile may use extended features from the FIX session standard by counterparty agreement.

5.1.1 Profile identification

The value of BeginString(8) must be “FIX.4.2”

5.1.2 Application version identification

Field Definition

DefaultApplVerID(1137) Not used with FIX.4.2 session profile as FIX 4.2 is the mandatory application layer.

DefaultApplExtID(1407) May be used by counterparty agreement in-band. Recommendation is to
communicate this information out-of-band via a rules of engagement, possibly by
using a FIX Orchestra rules of engagement.

DefaultCstmApplVerID(1408) May be used by counterparty agreement in-band on the Logon(35=A) message to
identify the version of the custom application or FIX Orchestra rules of
engagement.

5.2 FIX4 session profile

FIX4 is fully backward compatible with the FIX 4.4 session layer as defined in Volume 2 of the FIX 4.4 specification.

FIX4 adopters may use extended capabilities beyond the basic FIX 4.4 functionality by counterparty agreement.

The FIX4 session profile supports the communication of a single version of the FIX application layer.

5.2.1 Profile identification

The value of BeginString(8) must be “FIX.4.4”

5.2.2 Application version identification

The default FIX application version is FIX Latest.

Field Definition

DefaultApplVerID(1137) DefaultApplVerID(1137) may be used to specify the application version in the
Logon(35=A) message. If the DefaultApplVerID(1137) is not specified the default
will be assumed to be FIX Latest.

DegaultApplExtID(1407) May be used by counterparty agreement in-band. Recommendation is to
communicate this information out-of-band via a rules of engagement possibly by
using a FIX Orchestra rules of engagement.

DefaultCstmApplVerID(1408) May be used by counterparty agreement in-band on the Logon(35=A) message to
identify the custom application or FIX Orchestra rules of engagement.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 48 of 82

5.3 FIXT session profile

FIXT supports transmitting messages from multiple application versions over the same session layer. This capability is
the primary differentiator between the FIX4 session profile and FIXT session profile. FIXT may be used with a single
application version, such as FIX Latest. The benefit in using FIXT for a single application version is it provides an option
to include additional application versions at the individual message level at a future time.

5.3.1 Profile identification

The value of BeginString(8) must be “FIXT.1.1”.

5.3.2 Multiple application version support over a single FIXT session

The FIXT session profile (along with the LFIXT session profile based upon FIXT) permit application messages from
different application versions of FIX to be used over a single FIX session. The benefit is to broaden service offerings,
perform incremental enhancements at the individual message or message category level.

5.3.3 Session default application version identification

The session default application version must be present in DefaultApplVerID(1137) in the Logon(35=A) message.

The application version may be overridden by specifying the application version explicitly by specifying the
ApplVerID(1128) in the StandardHeader component of any application message by counterparty agreement.

Field Definition

DefaultApplVerID(1137) DefaultApplVerID(1137) must be specified on the Logon(35=A) message.

DegaultApplExtID(1407) May be used by counterparty agreement in-band. Recommendation is to
communicate this information out-of-band via a rules of engagement possibly by
using a FIX Orchestra rules of engagement.

DefaultCstmApplVerID(1408) May be used by counterparty agreement in-band on the Logon(35=A) message to
identify the custom application or FIX Orchestra rules of engagement.

5.3.4 Message type default application version

FIXT expands upon the ability to specify an application version on the Logon(35=A) message by allowing different
application versions to be specified by message type in the MsgTypeGrp component.

The MsgTypeGrp component may be used to specify what application messages are supported over the FIX session
being initiated.

Within the MsgTypeGrp component, a FIX session may specify a message type default application version on the
Logon(35=A) message. For each message type where the default application version is different from the session
default application version, the message type default application version is specified using the RefMsgType(372) field
to specify the message type, the RefApplVerID(1130) field to specify the application version, and the
DefaultVerIndicator(1410) field to indicate if RefApplVerID(1130) is the default.

When present, the RefApplVerID(1130) in the RefMsgTypeGrp component has precedence over the session default
application version specified in the DefaultApplVerID(1137) field of the Logon(35=A) message.

5.3.5 Explicit application version per message

The application version may be specified on a message instance using the ApplVerID(1128) field from the standard
header.

The explicit application version only applies to the message instance in which it is sent, default application versions
remain unaltered.

The explicit application version has precedence over the message type default application version and the session
default application version.

FIX session processors must maintain state information regarding the default application version used during the FIX
session.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 49 of 82

Table 4 — Application version precedence

Application
version Fields Precedence

Session
default

DefaultApplVerID(1137) Lowest level of precedence.

Message type
default

RefMsgType(372), RefApplVerID(1130),
DefaultVerIndicator(1410)

Supersedes the session default application version.

Explicit ApplVerID(1128) Highest precedence over default application versions.
Only applies to the message instance in which
ApplVerID(1128) is present.

5.3.6 Use of extension packs

A FIX session may specify a default extension pack as part of the session default application version by inclusion of a
valid extension pack number in the DefaultApplExtID(1407).

An extension pack can be specified for a specific message type using the RefApplExtID(1406) field within the
MsgTypeGrp component. If provided, RefApplExtID(1406) becomes part of the message type default application
version.

A message instance can explicitly include an extension pack in the ApplExtID(1156) field. If ApplExtID(1156) is specified
it becomes part of the explicit application version.

An extension pack is considered incompatible with the application version if the extension pack number specified is
less than the last extension pack that was used to create the application version.

Table 5 — Extension pack precedence

EP version Fields Precedence

Session
default

DefaultApplExtID(1407) Lowest level of precedence.

Message
type default

RefMsgType(372), RefApplExtID(1406),
DefaultVerIndicator(1410)

Supersedes the session default extension pack.

Explicit ApplExtID(1156) Highest precedence over default extension pack. Only
applies to the message instance in which
ApplExtID(1156) is present.

5.3.7 Use of a custom application version

A default custom application version may be specified in-band over a FIX session by inclusion of a user defined value
in DefaultCstmApplVerID(1408) on the Logon(35=A) message.

A custom application version can be specified for a specific message type using the RefCStmApplVerID(1131) field
within the MsgTypeGrp component. If provided, RefCStmApplVerID(1131) becomes part of the message type default
application version.

A message instance can explicitly include a custom application version in the CstmApplVerID(1129) field. If
CstmApplVerID(1129) is specified it becomes part of the explicit application version.

Table 6 — Custom application version precedence

EP version Fields Precedence

Session
default

DefaultCstmApplVerID(1408) Lowest level of precedence.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 50 of 82

EP version Fields Precedence

Message
type default

RefMsgType(372),
RefCStmApplVerID(1131),
DefaultVerIndicator(1410)

Supersedes the session default custom application
version.

Explicit CstmApplVerID(1129) Highest precedence over default custom application
versions. Only applies to the message instance in which
the CstmApplVerID(1129) is present.

5.4 Lightweight FIXT (LFIXT session profile)

The Lightweight FIXT session profile (LFIXT) is a restriction of the FIXT session profile. LFIXT eliminates the use of
session layer retransmission of messages to simplify the session layer protocol.

LFIXT defines two different modes of operation. Under LFIXT compatible mode, LFIXT peer is interoperable with
existing FIX session processors that support the FIXT session profile. Under LFIXT succinct mode, LFIXT peer is no
longer interoperable with FIXT peer, but the complexity of the session layer protocol is cut down further.

5.4.1 Profile identification

The value of BeginString(8) must be “FIXT.1.1”.

LFIXT shares the BeginString(8) value with the FIXT session profile in order to support its communication with the FIXT
peer under the LFIXT compatible mode.

5.4.2 Application version identification

The LFIXT session profile follows the same application version identification rules as the FIXT session profile.

5.4.3 LFIXT transport layer requirements

LFIXT does not support retransmission of messages at the session layer and relies on the application layer to provide
retransmission services during the FIX session when needed.

For LFIXT a FIX session exists over one FIX connection which exists over one transport layer. A loss of either the FIX
connection or the transport layer connection constitutes the end of a FIX session.

Each establishment of a FIX connection creates a new FIX session, which means that NextNumIn is set to 1 and the
NextNumOut is set to 1 in the FIX session processor.

5.4.4 LFIXT compatible mode

When operating under LFIXT compatible mode, a FIXT peer shall handle all possible types of FIXT inbound session layer
messages, but only send out session layer messages of limited types to enable a seamless communication between
the LFIXT peer and the FIXT peer. An LFIXT peer is compatible with its FIXT peer in this sense.

Similarly, two LFIXT peers have the ability to communicate with each other seamlessly when both operating under the
LFIXT compatible mode.

Figure 19 — FIXT peer connected to LFIXT peer operating under compatible mode

Table 7 — Session layer messages when peer uses LFIXT session profile under compatible mode

Session Layer Message Received from peer Sent to peer

HeartBeat(35=0) Yes Yes

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 51 of 82

Session Layer Message Received from peer Sent to peer

Logon(35=A) Yes Yes

TestRequest(35=1) Yes No

ResendRequest(35=4) Yes No

Reject(35=3) Yes Yes

SequenceReset(35=4)
GapFillFlag(123)=N

Yes Yes, but only passively

SequenceResest(35=4)
GapFillFlag(123)=Y

Yes No

Logout(35=5) Yes Yes

5.4.5 LFIXT succinct mode

When operating in LFIXT succinct mode, an LFIXT peer shall only accept a subset of inbound session layer message
types and shall only transmit a subset of session layer message types. The complexity of the session layer protocol is
reduced to a minimum in this way, while sacrificing the compatibility with FIXT peers.

Upon receiving an unexpected type of session layer message, an LFIXT peer operating under the LFIXT succinct mode
shall terminate the connection by sending a Logout(35=5) with a description of the error in Text(58) and then
terminate the transport layer connection.

Succinct mode shall only be used by an LFIXT peer when its counterparty is already known to be using the LFIXT
session profile, e.g. by prior out-of-band exchange of the rules of engagement13. Its counterparty can operate under
LFIXT compatible mode or under LFIXT succinct mode, but cannot be a FIXT peer (using the FIXT session profile) since
the two peers are not compatible in this case.

Figure 20 — LFIXT peer connected to LFIXT peer operating under succinct mode

Table 8 — Session layer messages when peer uses LFIXT session profile under succinct mode

Session Layer Message Received from peer Sent to peer

HeartBeat(35=0) Yes Yes

Logon(35=A) Yes Yes

Reject(35=3) Yes Yes

Logout(35=5) Yes Yes

5.4.6 LFIXT and FIXT operating mode interoperability

The following table shows the interoperability between LFIXT and FIXT peers for each operating mode of LFIXT.

13 FIX Orchestra may be used to communicate which FIX session profile and which operating mode is being used for a FIX enabled service.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 52 of 82

Table 9 — Interoperability between LFIXT and FIXT peers by operating mode

Operating Mode
LFIXT acceptor using
succinct mode

LFIXT acceptor using
compatible mode FIXT acceptor

LFIXT initiator using succinct
mode

interoperable interoperable not
interoperable

LFIXT initiator using
compatible mode

interoperable interoperable interoperable

FIXT initiator not interoperable interoperable interoperable

5.4.7 Validation of message sequence numbers

If a received message has a MsgSeqNum(34) less than NextNumIn, a serious error exists. The FIX session and transport
layer connection should be terminated unless the message received is:

• a SequenceReset(35=4) message with PossDupFlag(43) present with a value of “Y”.

• any message of a message type that supports retransmission with a PossDupFlag(43) present with a value
of “Y”.

• a Logon(35=A) message with ResetSeqNumFlag(141) present with a value of “Y”.

If a received message has a MsgSeqNum(34) greater than NextNumIn, a serious error exists. The FIX session and
transport layer connection should be terminated.

5.4.8 Application layer recovery

The application layer shall be responsible for message recovery.

An LFIXT session processor must not perform message recovery.

5.4.9 LFIXT initiator connects to LFIXT acceptor

An LFIXT initiator shall send a Logon(35=A) message with the following fields present

Table 10 — LFIXT Logon(35=A) initiator

Field Value

MsgSeqNum(34) 1

ResetSeqNumFlag(141) Y

NextExpectedSeqNum(789) 1

In the following diagram shows the standard LFIXT logon process.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 53 of 82

Figure 21 — LFIXT logon process

5.4.10 FIXT initiator connects to LFIXT acceptor (compatible mode)

A FIXT initiator that is able to persist message history shall send a Logon(35=A) message with the following fields
present. Upon receiving the Logon(35=A) request, an LFIXT acceptor shall adjust its own NextNumOut to the
NextExpectedMsgSeqNum(789) contained in the Logon(35=A) request.

Table 11 — FIXT Logon(35=A) initiator

Field Value

MsgSeqNum(34) 1

ResetSeqNumFlag(141) N

NextExpectedSeqNum(789) NextNumIn

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 54 of 82

In the following example, a FIXT initiator is establishing a new FIX connection to the LFIXT session. This example shows
how the LFIXT acceptor adjusts its NextNumIn and NextNumOut values to the FIXT session state being maintained by a
FIXT initiator.

Figure 22 — FIXT initiator connecting to LFIXT acceptor in compatible mode logon

In the following example, an LFIXT initiator is establishing a new FIX connection to the FIXT session. This example
shows how the FIXT acceptor resets its NextNumIn and NextNumOut values when the LFIXT initiator sends the
Logon(35=A) request.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 55 of 82

Figure 23 — LFIXT initiator connecting to FIXT acceptor in compatible mode logon

5.4.11 Receipt of ResendRequest(35=2) message from a FIXT peer

LFIXT peers are not expected to save outbound message history for retransmission.

If a ResendRequest(35=2) message is received, the LFIXT peer shall respond with a SequenceReset(35=4) with the
GapFillFlag(123) set to “N” and a NewSeqNo(36) = NextNumOut.

The following example shows a FIXT initiator connected to an LFIXT acceptor. The FIXT initiator does not process
messages with MsgSeqNum(34)=98 and MsgSeqNum(34)=99 for some reason. As a result, the FIXT initiator transmits
a ResendRequest(35=2) asking for messages 98 and 99. The LFIXT acceptor responds with a SequenceReset(35=4)
message with GapFillFlag(123) set to “N” and the NewSeqNo(36) set to the maximum of the EndSeqNo(16) from the

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 56 of 82

ResendRequest(35=2) message and the LFIXT acceptor NextNumOut. This example demonstrates that an LFIXT session
does not provide session layer message recovery.

Figure 24 — LFIXT resetting sequence numbers in LFIXT compatible mode

5.4.12 Processing invalid messages

If LFIXT encounters a garbled message or other data parsing issues, the LFIXT session processor should terminate the
connection by sending a Logout(35=5) with a description of the error in Text(58) and terminate the transport layer
connection.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 57 of 82

6 FIX message routing

6.1 Message routing details – one firm-to-one firm (point-to-point)

The following table provides examples regarding the use of SenderCompID(49), TargetCompID(56),
DeliverToCompID(128), and OnBehalfOfCompID(115) when using a single point-to-point FIX session between two
firms. Assumption (A=sell-side, B =buy-side):

Table 12 — Message routing example, single session between two firms

 SenderCompID OnBehalfOfCompID TargetCompID DeliverToCompID

A to B directly A B

B to A directly B A

6.2 Message routing details – third party message routing

The FIX session protocol supports the ability for a single FIX session to represent multiple counterparties. This can be
in a 1-to-many, many-to-1, or 1-to-1 fashion. In addition, some third parties may be connected to other third parties
effectively forming a “chain” of “hops” between the original message initiator and the final message receiver. The
SenderCompID(49), OnBehalfOfCompID(115), TargetCompID(56), and DeliverToCompID(128) fields are used for
routing purposes.

When a message travels over intermediary FIX sessions or an intermediary sends a message on behalf of another firm
(using OnBehalfOfCompID(115)), that intermediary may add their details to the HopGrp component. The HopGrp may
be used to build a “history” of FIX sessions through which the original message was transmitted. The HopGrp is not
used to facilitate routing, rather it provides an audit trail of intermediary FIX sessions involved in transmitting the
message to its final destination. An audit trail of intermediary involvement may be a requirement of some regulatory
bodies or counterparties. When an intermediary FIX session forwards a message on to the next hop (may be the end
point or another intermediary), that intermediary may add its hop details to the HopGrp (i.e. its SenderCompID(49) as
HopCompID(628), its SendingTime(52) as HopSendingTime(629), and the received message’s MsgSeqNum(34) or
some other reference as HopRefID(630)).

Note that if OnBehalfOfCompID(115) or DeliverToCompID(128) message source identification/routing is used for a FIX
session, then it must be used on all application messages transmitted via that session accordingly (reject the message
if not).

The following figure provides examples regarding the use of SenderCompID(49), TargetCompID(56),
DeliverToCompID(128), and OnBehalfOfCompID(115) when using a single FIX session to represent multiple firms.
Assumptions are that A=sell-side, B=buy-side, and Hub=third party:

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 58 of 82

Figure 25 — Message routing example, single session between multiple firms

Note that some fields—for example, ClOrdID(11) on a NewOrderSingle(35=D) message—must be unique for all orders
on a given FIX session. Thus, when using OnBehalfOfCompID(115) or DeliverToCompID(128) addressing, a
recommended approach is to prepend these fields to the original value. For example, if A sends the hub a ClOrdID(11)
value of “A001”, then the hub could specify a ClOrdID(11) of “A-A001” when sending the message to B to ensure
uniqueness.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 59 of 82

7 Transmitting alternatively encoded messages over a FIX session

XML content may be transmitted over a FIX session layer. FIXML or other XML-based content (such as ISO 20022 XML
messages, FpML XML messages) within the XmlData(213) field in the StandardHeader of the XMLnonFIX(35=n)
message.

The application message type is assumed to be contained in the XML document sent in XmlData(213) and is not
processed by the FIX session layer.

7.1 Use of Attachment group

Other encodings, such as SBE, JSON, Google Protocol Buffers, PDF, jpeg should be transmitted using the
AttachmentGrp component within the XMLnonFIX(35=n) message.14

The AttachmentGrp component provides the ability to attach other media type documents to a FIX message for
transmission. The media type can be any of the media types (previously referred to as MIME types) that are listed by
IANA RFC2046.

14 AttachmentGrp component added in EP167

/Users/hanno/FIX%20Protocol/GitHub/fix-session-layer-standards/target/docx/www.iana.org
http://www.iana.org/assignments/media-types/index.html

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 60 of 82

8 Components

8.1 AttachmentGrp

The AttachmentGrp component provides the ability to attach other media type documents to a FIX message for
transmission. The media type can be any of the media types (previously referred to as MIME types) that are listed by
IANA RFC2046. The AttachmentGrp is intended to be used to attach documents or payloads in other encodings, such
as XML, JSON, TTL, SBE, GPB, PDF, TIFF, jpg to a FIX message. Note when the AttachmentGrp is used within a
application message, such as the TradeCaptureReport(35=AE), the attachment should supplement the data already
contained in the application message. It is not intended to replace the content of the business message. The standard
fields within the application message should be populated, even if they duplicate data expressed within the
attachment(s).

Tag Name Req'd Description

2104 NoAttachments

→2105 AttachmentName N Required if NoAttachments(2104) > 0.
Specifies the file name of the attachment.

→2106 AttachmentMediaType N Required if EncodedAttachment(2112) is present. The
MIME media type (and optional subtype) of the
attachment. The values used are those assigned, listed and
maintained by IANA (www.iana.org) [RFC2046].

→2107 AttachmentClassification N Specifies semantically the type of the attached document
from a business perspective. The default classification
scheme reuses the FIX standard classification scheme of a
high level section (pretrade, trade, posttrade, etc.) and a
category, then a specific application or document type. The
expression follows {“section/category/application type”}.

→2108 AttachmentExternalURL N Either AttachmentExternalURL(2108) or
EncodedAttachment(2112) must be specified if
NoAttachments(2104) > 0.

→2109 AttachmentEncodingType N The encoding type of the content provided in
EncodedAttachment(2112).
Required if EncodedAttachment(2112) is present.

→2110 UnencodedAttachmentLen N Unencoded content length in octets. Can be used to
validate successful unencoding.

→2111 EncodedAttachmentLen N Length in octets of EncodedAttachment(2112).
Must be set if EncodedAttachment(2112) is specified and
must immediately precede it.

→2112 EncodedAttachment N The content of the attachment in the encoding format
specified in the AttachmentEncodingType(2109) field.
Either AttachmentExternalURL(2108) or
EncodedAttachment(2112) must be specified if
NoAttachments(2104) > 0.

→Component AttachmentKeywordGrp N Optional list of keywords associated with the
EncodedAttachment(2112).

8.2 AttachmentKeywordGrp

The AttachmentKeywordGrp component provides a place to associate keywords with an attachment document to
support the current approach of tagging to support metadata.

/Users/hanno/FIX%20Protocol/GitHub/fix-session-layer-standards/target/docx/www.iana.org
http://www.iana.org/assignments/media-types/index.html

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 61 of 82

Tag Name Req'd Description

2113 NoAttachmentKeywords

→2114 AttachmentKeyword N Required if NoAttachmentKeywords(2113) > 0.
Can be used to provide data or keyword tagging of the content in
EncodedAttachment(2112).

8.3 HopGrp

The HopGrp is used to build a history of the various FIX sessions over which an application message was transmitted.
The HopGrp is not used to facilitate message routing, rather it provides an audit trail of intermediary FIX sessions to
the ultimate receiver of a message.

Tag Name Req'd Description

627 NoHops

→628 HopCompID N Assigned value used to identify the third party firm which delivered a specific
message either from the firm which originated the message or from another
third party (if multiple “hops” are performed). It is recommended that this
value be the SenderCompID (49) of the third party.

→629 HopSendingTime N Time that HopCompID (628) sent the message. It is recommended that this
value be the SendingTime (52) of the message sent by the third party.

→630 HopRefID N Reference identifier assigned by HopCompID(628) associated with the
message sent. It is recommended that this value be the MsgSeqNum(34) of
the message sent by the third party.

8.4 MsgTypeGrp

The MsgTypeGrp may be used to specify the application level messages supported by a peer over the FIX session.

Tag Name Req'd Description

384 NoMsgTypes

→372 RefMsgType N Specifies a specific, supported MsgType(35). Required if
NoMsgTypes(384) is > 0. Should be specified from the point of view of
the sender of the Logon(35=A) message.

→385 MsgDirection N Indicates direction (send vs. receive) of a supported MsgType(35).
Required if NoMsgTypes(384) is > 0. Should be specified from the point
of view of the sender of the Logon(35=A) message.

→1130 RefApplVerID N Specifies the service pack release being applied to an application
message.

→1406 RefApplExtID N Specified the extension pack being applied to a message.

→1131 RefCstmApplVerID N Specifies a custom extension to a message being applied at the session
level.

→1410 DefaultVerIndicator N Indicates that this Application Version (RefApplVerID(1130),
RefApplExtID(1406),RefCstmApplVerID(1131)) is the default for the
RefMsgType(372) field.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 62 of 82

8.5 StandardHeader

Tag Name Req'd Description

8 BeginString Y FIX.4.2 | FIX.4.4 | FIXT.1.1
BeginString(8) must be the first field in the message.

9 BodyLength Y Message length, in octets.
BodyLength(9) must be the second field in the message.

35 MsgType Y Defines message type.
MsgType(35) must be the third field in the message.

1128 ApplVerID N FIXT.1.1 ONLY Indicates application version being used for a
message instance. ApplVerID(1128) applies to a specific
message occurrence.

1156 ApplExtID N FIXT.1.1 ONLY Indicates an extension pack number being used
for a message instance The ApplExtID(1156) applies to a
specific message occurrence.

1129 CstmApplVerID N FIXT.1.1 ONLY Identifies a custom (user specified) version for a
message instance.

49 SenderCompID Y (Always unencrypted)

56 TargetCompID Y (Always unencrypted)

115 OnBehalfOfCompID N Trading partner company ID used when sending messages via
a third party (Can be embedded within encrypted data
section.)

128 DeliverToCompID N Trading partner company ID used when sending messages via
a third party (Can be embedded within encrypted data
section.)

90 SecureDataLen N Length field for SecureData(91).
SecureDataLen(90) must be present and unencrypted if
SecureData(91) is present in the message.

91 SecureData N Encrypted message content.
Tag number, separator (“=”), and delimiter (<SOH>) must be
unencrypted. If present in the message, SecureData(91) must
be immediately preceded by SecureDataLen(90). The use of
SecureData(90) and its associated length field
SecureDataLen(91) was deprecated as of the FIXT.1.1 session
specification. Application layer encryption is still supported by
counterparty agreement.

34 MsgSeqNum Y (Can be embedded within encrypted data section.)

50 SenderSubID N (Can be embedded within encrypted data section.)

142 SenderLocationID N Sender's LocationID (i.e. geographic location and/or desk) (Can
be embedded within encrypted data section.)

57 TargetSubID N “ADMIN” reserved for administrative messages not intended
for a specific user. (Can be embedded within encrypted data
section.)

143 TargetLocationID N Trading partner LocationID (i.e. geographic location and/or
desk) (Can be embedded within encrypted data section.)

116 OnBehalfOfSubID N Trading partner SubID used when delivering messages via a
third party. (Can be embedded within encrypted data section.)

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 63 of 82

Tag Name Req'd Description

144 OnBehalfOfLocationID N Trading partner LocationID (i.e. geographic location and/or
desk) used when delivering messages via a third party. (Can be
embedded within encrypted data section.)

129 DeliverToSubID N Trading partner SubID used when delivering messages via a
third party. (Can be embedded within encrypted data section.)

145 DeliverToLocationID N Trading partner LocationID (i.e. geographic location and/or
desk) used when delivering messages via a third party. (Can be
embedded within encrypted data section.)

43 PossDupFlag N Always required for retransmitted messages, whether
prompted by the sending system or as the result of a resend
request. (Can be embedded within encrypted data section.)

97 PossResend N Required when message may be duplicate of another message
sent under a different sequence number. (Can be embedded
within encrypted data section.)

52 SendingTime Y (Can be embedded within encrypted data section.)

122 OrigSendingTime N Required for message retransmitted as a result of a
ResendRequest. If data is not available set to same value as
SendingTime (Can be embedded within encrypted data
section.)

212 XmlDataLen N Required when XmlData(231) is present. Length of the
XmlData(231) field in octets.

213 XmlData N Can contain a XML formatted message block (e.g. FIXML,
ISO20022, FpML).

347 MessageEncoding N Type of message encoding used for fields of datatype data,
commonly referred to as encoded fields.
MessageEncoding(347) must be present if any fields of
datatype data are present in the message.

369 LastMsgSeqNumProcessed N The last MsgSeqNum(34) value received by the FIX session
processor and processed by downstream application, such as
trading system or order routing system. May be specified on
every message sent. Useful for detecting a backlog with a
counterparty.

Component HopGrp N The HopGrp may be used to track the FIX sessions over which
an application message has been sent.

8.6 StandardTrailer

Tag Name Req'd Description

93 SignatureLength N Length field for Signature(89).
SignatureLength(93) must be present and unencrypted if Signature(89) is
present in the message. SignatureLength(93) must not be included as part of the
encrypted content in SecureData(91).

89 Signature N If Signature(89) is present, it must be immediately preceded by
SignatureLength(93). Signature(89) must not be included as part of the
encrypted content in SecureData(91).

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 64 of 82

Tag Name Req'd Description

10 CheckSum Y Three-octet character representation of the modulo 256 checksum.
Checksum(10) must be the last field in the message. The end of field delimiter
(<SOH>) of Checksum(10) serves as the end of message delimiter.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 65 of 82

9 Messages

9.1 Heartbeat message

The Heartbeat(35=0) message is sent unilaterally to keep a FIX connection active during periods of inactivity and it is
also sent as a response to a TestRequest(35=1) from a peer.

Tag Name Req'd Description

Component StandardHeader Y MsgType = 0
T

112 TestReqID N Required when the heartbeat is the result of a Test Request message.

Component StandardTrailer Y

9.2 TestRequest message

The TestRequest(35=1) is used to force a response from the peer. A HeartBeat(35=0) with the TestReqID(112) set to
the value from the TestRequest(35=1)

Tag Name Req'd Description

Component StandardHeader Y MsgType = 1

112 TestReqID Y An arbitrary identifier provided by the sender of the TestRequest(35=1)
message this must be returned by the peer in a HeartBeat(35=0)
message response to confirm viability of the FIX connection.

Component StandardTrailer Y

9.3 ResendRequest message

The ResendRequest(35=2) is sent by the receiving application to initiate the retransmission of messages.

Tag Name Req'd Description

Component StandardHeader Y MsgType = 2

7 BeginSeqNo Y The sequence number of the first message that requires
retransmission.

16 EndSeqNo Y The sequence number of the last message sequence number. “0”
specifies retransmission of all messages since BeginSeqNo(7)

Component StandardTrailer Y

9.4 Reject message

The Reject(35=3) message should be issued when a message is received but cannot be properly processed due to a
session laver or tagvalue encoding violation.

Tag Name Req'd Description

Component StandardHeader Y MsgType = 3

45 RefSeqNum Y MsgSeqNum of rejected message

371 RefTagID N The tag number of the FIX field being referenced.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 66 of 82

Tag Name Req'd Description

372 RefMsgType N The MsgType of the FIX message being referenced.

1130 RefApplVerID N Recommended when rejecting an application message that does
not explicitly provide ApplVerID (1128) on the message being
rejected. In this case the value from the DefaultApplVerID(1137) or
the default value specified in the NoMsgTypes repeating group on
the logon message should be provided.

1406 RefApplExtID N Recommended when rejecting an application message that does
not explicitly provide ApplExtID(1156) on the rejected message. In
this case the value from the DefaultApplExtID(1407) or the default
value specified in the NoMsgTypes repeating group on the logon
message should be provided.

1131 RefCstmApplVerID N Recommended when rejecting an application message that does
not explicitly provide CstmApplVerID(1129) on the message being
rejected. In this case the value from the
DefaultCstmApplVerID(1408) or the default value specified in the
NoMsgTypes repeating group on the logon message should be
provided.

373 SessionRejectReason N Code to identify reason for a session-level Reject message.

58 Text N Where possible, message to explain reason for rejection

354 EncodedTextLen N Must be set if EncodedText field is specified and must immediately
precede it.

355 EncodedText N Encoded (non-ASCII characters) representation of the Text field in
the encoded format specified via the MessageEncoding field.

Component StandardTrailer Y

9.5 SequenceReset message

The SequenceReset(35=4) message is used to gap fill over messages not being resent in response to a resend request
or it can be used to reset the sequence number to a new value instead of resending messages.

Tag Name Req'd Description

Component StandardHeader Y MsgType = 4

123 GapFillFlag N When set to "Y" Indicates that the SequenceReset(35=4)
message is replacing session layer or application messages
which will not be resent thus filling gaps in the sequence
number. When set to "N" indicates that the sequence
number is being reset to a new value. Any messages with
MsgSeqNum(34) less than NewSeqNo(36) will not be resent.

36 NewSeqNo Y The sequence number that the recipient should use to reset
its NextNumIn.

1744 ApplLevelRecoveryIndicator N Indicates that some application level messages were not
retransmitted due to a gap fill or sequence reset and
application level recovery should be performed.

Component StandardTrailer Y

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 67 of 82

9.6 Logout message

The Logout(35=5) message initiates and also acknowledges the termination of a FIX connection

Tag Name Req'd Description

Component StandardHeader Y MsgType = 5

1409 SessionStatus N Session status at time of logout.

789 NextExpectedMsgSeqNum N May be used to provide the expected MsgSeqNum in case of
an error involving session synchronization. As this is an
extended feature, must be used by counterparty agreement.

58 Text N Should be populated with diagnostic or error messages if the
Logon(35=5) is being sent due to an issue encountered in the
FIX connection.

354 EncodedTextLen N Must be present and set the number of octets in
EncodedText(355) when EncodedText(355) is present.
EncodedTextLen(354) must immediately precede
EncodedText(355) it in the message.

355 EncodedText N Encoded representation of the contents of Text(58) field.

Component StandardTrailer Y

9.7 Logon message

The Logon(35=A) message is used to initiate a FIX Connection and to acknowledge the initiation of a FIX Connection.

Tag Name Req'd Description

Component StandardHeader Y MsgType = A

98 EncryptMethod Y This field should always be unencrypted. The use of
application level encryption was deprecated in favor of
telecommunications link encryption. This field is still required
to be present in the Logon(35=A) message but should
normally be set to “0” (None). (Always unencrypted)

108 HeartBtInt Y Used to specify the heartbeat interval for the FIX connection
in seconds.

95 RawDataLength N Must be present and set to the number of octets in
RawData(96) when RawData(96) is present. Must
immediately precede RawData(96) in the message.

96 RawData N Provided to support authentication methods in order to
tunnel credentials via the session layer to the counterparty.

141 ResetSeqNumFlag N Indicates both sides of a FIX session should reset their
NextNunIn and NextNumOut values to 1 and start a new FIX
session.

789 NextExpectedMsgSeqNum N Optional, alternative via counterparty bi-lateral agreement
message gap detection and recovery approach (see “Logon
Message NextExpectedMsgSeqNum Processing” section)

383 MaxMessageSize N Can be used to specify the maximum number of octets
supported for messages received

Component MsgTypeGrp N May be used to populate what messages are supported in
the FIX session.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 68 of 82

Tag Name Req'd Description

464 TestMessageIndicator N May be used to specify that this FIX session will be sending
and receiving “test” vs. “production” messages. If the
TestMessageIndicator(464) field is not present, the default is
assumed to be “production”.

553 Username N May be used for clear text userid.

554 Password N May be used for clear text password. No longer
recommended for use. Use EncryptedPassword(1402)
instead.

925 NewPassword N Specifies a new clear text password. The new password is
used for subsequent logons. No longer recommended for
use. Use EncryptedNewPassword(1404) instead.

1400 EncryptedPasswordMethod N User specified encryption method that is used for the
EncryptedPassword(1402) and
EncryptedNewPassword(1404) fields.

1401 EncryptedPasswordLen N Must be present and contain the number of octets in
EncryptedPassword(1402). Must immediately precede
EncryptedPassword(1402)in the message.

1402 EncryptedPassword N May be used to transmit an encrypted password.

1403 EncryptedNewPasswordLen N Must be present and contain the number of octets in
EncryptedNewPassword(1404). Must immediately precede
EncryptedNewPassword(1404) in the message.

1404 EncryptedNewPassword N Encrypted new password- encrypted via the method
specified in EncryptedPasswordMethod(1400).

1409 SessionStatus N Session status at time of logon. Field is intended to be used
when the logon is sent as an acknowledgement from
acceptor of the FIX session.

1137 DefaultApplVerID Y The default version of FIX messages used by the FIX
application layer.

1407 DefaultApplExtID N The default extension pack number used by the FIX
application layer.

1408 DefaultCstmApplVerID N The default custom application version used by the FIX
application layer. May be used to specify a reference to the
FIX Orchestra rules of engagement that defines the
application layer.

1600 FIXEngineName N Name of product or system responsible for communicating
FIX messages, such as a FIX Engine or FIX Gateway.

1601 FIXEngineVersion N The version of the product or system responsible for
communicating FIX messages, such as a FIX Engine or FIX
Gateway.

1602 FIXEngineVendor N The version of the product or system responsible for
communicating FIX messages, such as a FIX Engine or FIX
Gateway.

1603 ApplicationSystemName N Provides the name of the application system being used to
create application level messages.

1604 ApplicationSystemVersion N Provides the version of the application system.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 69 of 82

Tag Name Req'd Description

1605 ApplicationSystemVendor N Provides the vendor of the application system.

58 Text N Available to provide a response to logon when used as a
logon acknowledgement from acceptor back to the logon
initiator.

354 EncodedTextLen N Must be present and be set to the number of octets in
EncodedText(355) when EncodedText(355) is present. Must
immediately precede EncodedText(355) in the message.

355 EncodedText N Encoded representation of the Text field in the encoded
format specified via the MessageEncoding(347) field.
Must be immediately preceded by EncodedTextLen(354).

Component StandardTrailer Y

9.8 XMLnonFIX message

Tag Name Req'd Description

Component StandardHeader Y XMLnonFIX(35=n) is used to transmit XML documents, such as FIXML,
ISO 20022, or FpML over a FIX session layer

Component AttachmentGrp N Recommended for use to include other encodings or content types.
The AttachmentGrp can support multiple attachments and media
types.

Component StandardTrailer Y

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 70 of 82

10Fields

Tag Name Datatype Description

7 BeginSeqNo SeqNum Message sequence number of first message in
range to be retransmitted.

8 BeginString String Identifies beginning of a new FIX tagvalue
encoded message. BeginString(8) contains the
protocol versions for versions before FIX.4.4.
FIX.4.4 and later BeginString(8) represents the
FIX session profile.

9 BodyLength Length The message length must be specified in the
BodyLength(9) field. The length must be
calculated by counting the number of octets in
the message following the end of field
delimiter (<SOH>) of BodyLength(9), up to and
including the end of field delimiter (<SOH>) of
the field immediately preceding the
CheckSum(10) field.

10 CheckSum String Three-octet character representation of the
modulo 256 checksum. Checksum(10) must be
the last field in the message. The end of field
delimiter (<SOH>) of Checksum(10) serves as
the end of message delimiter.

16 EndSeqNo SeqNum Message sequence number of last message in
range to be retransmitted. If request is for a
single message, then BeginSeqNo(7) =
EndSeqNo(16). If request is for all messages
subsequent to a particular message,
EndSeqNo(16) = “0” (representing infinity).

34 MsgSeqNum SeqNum Message sequence number.

35 MsgType MsgTypeCodeSet Defines the message type. MsgType(35) is
case sensitive.

36 NewSeqNo SeqNum New sequence number.

43 PossDupFlag PossDupFlagCodeSet Indicates possible retransmission of the
message with the sequence number in the
MsgSeqNum(34) field.

45 RefSeqNum SeqNum Reference message sequence number

49 SenderCompID String Assigned value used to identify peer sending
message. SenderCompID(49) and
TargetCompID(56) uniquely define a session.

50 SenderSubID String Assigned value used to identify specific
message originator (desk, trader, etc.)

52 SendingTime UTCTimestamp Time of message transmission (always
expressed in UTC (Universal Time
Coordinated, also known as “GMT”)

56 TargetCompID String Assigned value used to identify peer receiving
the message. SenderCompID(49) and
TargetCompID(56) uniquely define a session.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 71 of 82

Tag Name Datatype Description

57 TargetSubID String Assigned value used to identify specific
individual or unit intended to receive
message. “ADMIN” reserved for
administrative messages not intended for a
specific user.

58 Text String Free format text string often populated with
error messages or warnings.

89 Signature data Electronic signature

90 SecureDataLen Length Length in octets of the SecreData(91) field.

91 SecureData data Encrypted message contents.

93 SignatureLength Length Number of octets in the Signature(89) field.

95 RawDataLength Length Number of octets in RawData(96).

96 RawData data Unformatted raw data, can include bitmaps,
word processor documents, etc.

97 PossResend PossResendCodeSet Indicates that message contain information
that may have been sent earlier under
another sequence number.

98 EncryptMethod EncryptMethodCodeSet Method of encryption.

108 HeartBtInt int Heartbeat interval (seconds)

112 TestReqID String Identifier included in TestRequest(35=1)
message to be returned by the peer in a
Heartbeat(35=0) message as a response.

115 OnBehalfOfCompID String Assigned value used to identify firm
originating message if the message was
delivered by a third party i.e. the third party
firm identifier would be delivered in the
SenderCompID(49) field and the firm
originating the message in this field.

116 OnBehalfOfSubID String Assigned value used to identify specific
message originator (i.e. trader) if the message
was delivered by a third party

122 OrigSendingTime UTCTimestamp Original time of message transmission (always
expressed in UTC (Universal Time
Coordinated, also known as “GMT”) when
transmitting orders as the result of a resend
request.

123 GapFillFlag GapFillFlagCodeSet When set to “Y” Indicates that the
SequenceReset(35=4) message is replacing
session layer or application messages which
will not be resent thus filling gaps in the
sequence number. When set to “N” indicates
that the sequence number is being reset to a
new value. Any messages with
MsgSeqNum(34) less than NewSeqNo(36) will
not be resent.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 72 of 82

Tag Name Datatype Description

128 DeliverToCompID String Assigned value used to identify the firm
targeted to receive the message if the
message is delivered by a third party i.e. the
third party firm identifier would be delivered
in the TargetCompID (56) field and the
ultimate receiver firm ID in this field.

129 DeliverToSubID String Assigned value used to identify specific
message recipient (i.e. trader) if the message
is delivered by a third party

141 ResetSeqNumFlag ResetSeqNumFlagCodeSet Indicates that both sides of the FIX session
should reset sequence numbers.

142 SenderLocationID String Assigned value used to identify specific
message originator's location (i.e. geographic
location and/or desk, trader)

143 TargetLocationID String Assigned value used to identify specific
message destination's location (i.e. geographic
location and/or desk, trader)

144 OnBehalfOfLocationID String Assigned value used to identify specific
message originator's location (i.e. geographic
location and/or desk, trader) if the message
was delivered by a third party

145 DeliverToLocationID String Assigned value used to identify specific
message recipient's location (i.e. geographic
location and/or desk, trader) if the message
was delivered by a third party

212 XmlDataLen Length Length in octets of the XmlData(213) field.

213 XmlData data Actual XML document (e.g. FIXML, ISO 20022,
FpML).

347 MessageEncoding String Type of message encoding used in a message's
encoded fields. MessageEncoding(347) must
be specified if any fields of datatype data are
present in the message.

354 EncodedTextLen Length Length in octets of EncodedText(355).

355 EncodedText data Encoded representation of the Text(58) field
in the encoded format specified via the
MessageEncoding(347) field

369 LastMsgSeqNumProcessed SeqNum The last MsgSeqNum(34) value received by
the FIX engine and processed by downstream
application, such as trading engine or order
routing system. Can be specified on every
message sent. Useful for detecting a backlog
with a counterparty.

371 RefTagID int The tag number of the FIX field being
referenced.

372 RefMsgType MsgTypeCodeSet The MsgType(35) of the FIX message being
referenced.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 73 of 82

Tag Name Datatype Description

373 SessionRejectReason SessionRejectReasonCodeSet Code to identify reason for a session-level
Reject message.

383 MaxMessageSize Length Maximum number of octets supported for a
single message.

384 NoMsgTypes NumInGroup Number of MsgTypes(35) in repeating group.

385 MsgDirection MsgDirectionCodeSet Specifies the direction of the message.

464 TestMessageIndicator TestMessageIndicatorCodeSet Indicates whether or not this FIX Session is a
“test” vs. “production” connection.

553 Username String Userid or username.

554 Password String Password or passphrase.

627 NoHops NumInGroup Number of HopCompID(628) entries in
repeating group.

628 HopCompID String Assigned value used to identify the third party
firm which delivered a specific message either
from the firm which originated the message or
from another third party (if multiple “hops”
are performed). It is recommended that this
value be the SenderCompID(49) of the third
party.
Applicable when messages are
communicated/re-distributed via third parties
which function as service bureaus or “hubs”.
Only applicable if OnBehalfOfCompID(115) is
being used.

629 HopSendingTime UTCTimestamp Time that HopCompID(628) sent the message.
It is recommended that this value be the
SendingTime (52) of the message sent by the
third party.
Applicable when messages are
communicated/re-distributed via third parties
which function as service bureaus or “hubs”.
Only applicable if OnBehalfOfCompID(115) is
being used.

630 HopRefID SeqNum Reference identifier assigned by
HopCompID(628) associated with the message
sent. It is recommended that this value be the
MsgSeqNum(34) of the message sent by the
third party.
Applicable when messages are
communicated/re-distributed via third parties
which function as service bureaus or “hubs”.
Only applicable if OnBehalfOfCompID(115) is
being used.

789 NextExpectedMsgSeqNum SeqNum Next expected MsgSeqNum(34) value to be
received.

925 NewPassword String New Password or passphrase.

1128 ApplVerID ApplVerIDCodeSet Specifies application version.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 74 of 82

Tag Name Datatype Description

1129 CstmApplVerID String Custom application version for a FIX service
offering.

1130 RefApplVerID ApplVerIDCodeSet The FIX application layer version.

1131 RefCstmApplVerID String Reference to a custom application version
identifier associated with a message.

1137 DefaultApplVerID ApplVerIDCodeSet Specifies the FIX application version identifier.
If DefaultApplVerID(1137) is not present, the
default application level is assumed to be
FIXLatest (value 10)

1156 ApplExtID int The extension pack number associated with
an application message.

1400 EncryptedPasswordMethod int Enumeration defining the encryption method
used to encrypt password fields.
At this time there are no encryption methods
defined by FIX within the FIX session layer.

1401 EncryptedPasswordLen Length Length in octets of the
EncryptedPassword(1402) field.

1402 EncryptedPassword data Encrypted password - encrypted via the
method specified in the field
EncryptedPasswordMethod(1400)

1403 EncryptedNewPasswordLen Length Length of the EncryptedNewPassword(1404)
field

1404 EncryptedNewPassword data Encrypted new password - encrypted via the
method specified in the field
EncryptedPasswordMethod(1400)

1406 RefApplExtID int The extension pack number associated with
an application message.

1407 DefaultApplExtID int The extension pack number that is the default
for a FIX session.

1408 DefaultCstmApplVerID String The default custom application version ID that
is the default for a session.

1409 SessionStatus SessionStatusCodeSet Status of a FIX session

1410 DefaultVerIndicator Boolean

1600 FIXEngineName String Provides the name of the infrastructure
component being used for session level
communication. Normally this would be the
FIX Engine or FIX Gateway product name.

1601 FIXEngineVersion String Provides the version of the infrastructure
component.

1602 FIXEngineVendor String Provides the name of the vendor providing the
infrastructure component.

1603 ApplicationSystemName String Provides the name of the application system
being used to generate FIX application

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 75 of 82

Tag Name Datatype Description

messages. This will normally be a trading
system, OMS, or EMS.

1604 ApplicationSystemVersion String Provides the version of the application system
being used to initiate FIX application
messages.

1605 ApplicationSystemVendor String Provides the vendor of the application system.

1744 ApplLevelRecoveryIndicator ApplLevelRecoveryIndicatorCodeSet Indicates whether application level recovery is
needed.

2104 NoAttachments NumInGroup The number of attached files.

2105 AttachmentName String Specifies the file name of the attachment.

2106 AttachmentMediaType String The MIME media type (and optional subtype)
of the attachment. The values used are those
assigned, listed and maintained by IANA
(www.iana.org) [RFC2046]. See
http://www.iana.org/assignments/media-
types/index.html for available types.
Examples values (RFC number provided for
reference here only):
“application/pdf” (see [RFC3778])
“application/msword” (for .doc files)
“multipart/signed” (see [RFC1847])
“application/vnd.openxmlformats-
officedocument.wordprocessingml.document”
(for .docx files)

2107 AttachmentClassification String Specifies semantically the type of the attached
document from a business perspective. The
default classification scheme reuses the FIX
standard classification scheme of a high level
section (pretrade, trade, posttrade, etc.) and a
category, then a specific application or
document type. The expression follows
{“section/category/application type”}.
The goal here is to map the attachment into
the sections and categories of the FIX business
messages if possible. The classification scheme
can be expanded or replaced by counterparty
agreement. This approach permits the
introduction and reference to other business
ontologies.
Example:
posttrade/confirmation/confirm
pretrade//termsheet

2108 AttachmentExternalURL String Used to specify an external URL where the
attachment can be obtained.

2109 AttachmentEncodingType AttachmentEncodingTypeCodeSet The encoding type of the content provided in
EncodedAttachment(2112).

2110 UnencodedAttachmentLen int Unencoded content length in octets. Can be
used to validate successful decoding.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 76 of 82

Tag Name Datatype Description

2111 EncodedAttachmentLen Length Byte length of encoded the
EncodedAttachment(2112) field.

2112 EncodedAttachment data The content of the attachment in the
encoding format specified in the
AttachmentEncodingType(2109) field.

2113 NoAttachmentKeywords NumInGroup The number of attachment keywords.

2114 AttachmentKeyword String Can be used to provide data or keyword
tagging of the content of the attachment.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 77 of 82

11Code sets

11.1 ApplLevelRecoveryIndicatorCodeSet

Indicates whether application level recovery is needed.

Datatype int

ApplLevelRecoveryIndicatorCodeSet codes

Name Value Description

NoApplRecoveryNeeded 0 Application level recovery is not needed (default)

ApplRecoveryNeeded 1 Application level recovery is needed

11.2 ApplVerIDCodeSet

Specifies the service pack release being applied at message level. Enumerated field with values assigned at time of
service pack release

Datatype String

ApplVerIDCodeSet codes

Name Value Description

FIX27 0 FIX27

FIX30 1 FIX30

FIX40 2 FIX40

FIX41 3 FIX41

FIX42 4 FIX42

FIX43 5 FIX43

FIX44 6 FIX44

FIX50 7 FIX50

FIX50SP1 8 FIX50SP1

FIX50SP2 9 FIX50SP2

FIXLatest 10 FIXLatest

11.3 AttachmentEncodingTypeCodeSet

The encoding type of the content provided in EncodedAttachment(2112).

Datatype int

AttachmentEncodingTypeCodeSet codes

Name Value Description

Base64 0 Base64 encoding
Base64 Encoding.

RawBinary 1 Unencoded binary content
Unencoded binary content.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 78 of 82

11.4 EncryptMethodCodeSet

Method of encryption.

Datatype int

EncryptMethodCodeSet codes

Name Value Description

None 0 None

PKCS 1 PKCS (Proprietary)

DES 2 DES (ECB Mode)

PKCSDES 3 PKCS / DES (Proprietary)

PGPDES 4 PGP / DES (Defunct)

PGPDESMD5 5 PGP / DES-MD5 (See app note on FIX web site)

PEM 6 PEM / DES-MD5 (see app note on FIX web site)

11.5 GapFillFlagCodeSet

Indicates that the SequenceReset(35=4) message is replacing session layer or application messages which will not be
resent.

Datatype Boolean

GapFillFlagCodeSet codes

Name Value Description

SequenceReset N Sequence Reset, Ignore MsgSeqNum(34)

GapFillMessage Y Gap Fill Message, MsgSeqNum(34) valid and is replacing previously transmitted
message.

11.6 MsgDirectionCodeSet

Specifies the direction of the message.

Datatype char

MsgDirectionCodeSet codes

Name Value Description

Receive R Receive

Send S Send

11.7 MsgTypeCodeSet

Message types for session level messages. Case sensitive alphanumeric character string. A “U” as the first character in
the MsgType field (i.e. U, U2, etc) indicates that the message format is privately defined between the sender and
receiver.

Datatype String

MsgTypeCodeSet codes

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 79 of 82

Name Value Description

Heartbeat 0 Heartbeat Message

TestRequest 1 TestRequest Message

ResendRequest 2 ResendRequest Message

Reject 3 Reject Message

SequenceReset 4 SequenceReset Message

Logout 5 Logout Message

Logon A Logon Message

BusinessMessageReject j BusinessMessageReject Message

XMLnonFIX n XMLnonFIX Message

11.8 PossDupFlagCodeSet

Indicates possible retransmission of message with this sequence number

Datatype Boolean

PossDupFlagCodeSet codes

Name Value Description

OriginalTransmission N Original transmission

PossibleDuplicate Y Possible duplicate

11.9 PossResendCodeSet

Indicates that message may contain information that has been sent under another sequence number.

Datatype Boolean

PossResendCodeSet codes

Name Value Description

OriginalTransmission N Original Transmission

PossibleResend Y Possible Resend

11.10 ResetSeqNumFlagCodeSet

Indicates that both sides of the FIX session should reset sequence numbers, effectively causing a new FIX session.

Datatype Boolean

ResetSeqNumFlagCodeSet codes

Name Value Description

No N No

Yes Y Yes, reset sequence numbers

11.11 SessionRejectReasonCodeSet

Code to identify reason for a session-level Reject message.

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 80 of 82

Datatype int

SessionRejectReasonCodeSet codes

Name Value Description

InvalidTagNumber 0 Invalid Tag Number

RequiredTagMissing 1 Required Tag Missing

TagNotDefinedForThisMessageType 2 Tag not defined for this message type

UndefinedTag 3 Undefined tag

TagSpecifiedWithoutAValue 4 Tag specified without a value

ValueIsIncorrect 5 Value is incorrect (out of range) for this tag

IncorrectDataFormatForValue 6 Incorrect data format for value

DecryptionProblem 7 Decryption problem

SignatureProblem 8 Signature problem

CompIDProblem 9 CompID problem

SendingTimeAccuracyProblem 10 SendingTime Accuracy Problem

InvalidMsgType 11 Invalid MsgType

XMLValidationError 12 XML Validation Error

TagAppearsMoreThanOnce 13 Tag appears more than once

TagSpecifiedOutOfRequiredOrder 14 Tag specified out of required order

RepeatingGroupFieldsOutOfOrder 15 Repeating group fields out of order

IncorrectNumInGroupCountForRepeatingGroup 16 Incorrect NumInGroup count for repeating group

FieldDelimiterInFieldValue 17 Field value contains the field delimiter, the <SOH>
character.

InvalidUnsupportedAppVersion 18 Invalid or unsupported Application Version

Other 99 Other

11.12 SessionStatusCodeSet

Status of a FIX session

Datatype int

SessionStatusCodeSet codes

Name Value Description

SessionActive 0 Session active

SessionPasswordChanged 1 Session password changed

SessionPasswordDueToExpire 2 Session password due to expire

NewSessionPasswordDoesNotComplyWithPolicy 3 New session password does not comply with policy

SessionLogoutComplete 4 Session logout complete

InvalidUsernameOrPassword 5 Invalid username or password

AccountLocked 6 Account locked

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 81 of 82

Name Value Description

LogonsAreNotAllowedAtThisTime 7 Logons are not allowed at this time

PasswordExpired 8 Password expired

ReceivedMsgSeqNumTooLow 9 Received MsgSeqNum(34) is too low.

ReceivedNextExpectedMsgSeqNumTooHigh 10 Received NextExpectedMsgSeqNum(789) is too high.

11.13 TestMessageIndicatorCodeSet

Indicates if the FIX Session is intended to be test or production.

Datatype Boolean

TestMessageIndicatorCodeSet codes

Name Value Description

False N False (production)

True Y True (test)

FIX TECHNICAL STANDARD November 2020

© Copyright, 2011-2020, FIX Protocol, Limited Page 82 of 82

Bibliography
[1] Financial Information eXchange – FIX Session Layer Test Cases

[2] Light-weight FIX Session Layer Protocol (draft)

[3] FIX 4.2 Specification with 20010501 Errata https://www.fixtrading.org/standards/fix-4-2/

[4] FIX 4.4 Specification with 20030618 Errata https://www.fixtrading.org/standards/fix-4-4/

[5] FIX 5.0 Specification Service Pack 2 with 20131209 Errata https://www.fixtrading.org/standards/fix-5-0-sp-2/

[6] FpML 5.11 Recommendation https://www.fpml.org/spec/fpml-5-11-8-rec-1/

[7] FIX Orchestra Technical Specification Draft Standard v1.0 https://www.fixtrading.org/packages/fix-orchestra-
technical-specification-draft-standard-v1-0/

[8] ISO 20022-1:2013 Financial services — Universal financial industry message scheme — Part 1: Metamodel

[9] ISO 20022-2:2013 Financial services — Universal financial industry message scheme — Part 2: UML profile

[10] ISO 20022-3:2013 Financial services — Universal financial industry message scheme — Part 3: Modelling

[11] ISO 20022-4:2013 Financial services — Universal financial industry message scheme — Part 4: XML Schema
generation

[12] ISO 20022-5:2013 Financial services — Universal financial industry message scheme — Part 5: Reverse
engineering

[13] ISO 20022-6:2013 Financial services — Universal financial industry message scheme — Part 6: Message transport
characteristics

[14] ISO 20022-7:2013 Financial services — Universal financial industry message scheme — Part 7: Registration

[15] ISO 20022-8:2013 Financial services — Universal financial industry message scheme — Part 8: ASN.1 generation

[16] ISO/IEC 7498-1:1994 Information technology – Open Systems Interconnection – Basic Reference Model: The Basic
Model

[17] ISO 7498-2:1989 Information processing systems – Open Systems Interconnection – Basic Reference Model – Part
2: Security Architecture

[18] Hohpe, Gregor, and Bobby Woolf. Enterprise Integration Patterns: Designing, Building, and Deploying Messaging
Solutions. Boston: Addison-Wesley, 2003.

[19] Hohpe, Gregor. Durable Subscriber. Enterprise Integration Patterns.
https://www.enterpriseintegrationpatterns.com/patterns/messaging/DurableSubscription.html

[20] Hohpe, Gregor. Guaranteed Delivery. Enterprise Integration Patterns.
https://www.enterpriseintegrationpatterns.com/patterns/messaging/GuaranteedMessaging.html

Unsupported FIX application versions:

[21] FIX 4.3 Specifications https://www.fixtrading.org/standards/unsupported/fix-4-3/

[22] FIX 5.0 Specifications https://www.fixtrading.org/standards/unsupported/fix-5-0/

[23] FIX 5.0 SP1 Specifications https://www.fixtrading.org/standards/unsupported/fix-5-0-sp1/

https://www.fixtrading.org/standards/fix-4-2/
https://www.fixtrading.org/standards/fix-4-4/
https://www.fixtrading.org/standards/fix-5-0-sp-2/
https://www.fpml.org/spec/fpml-5-11-8-rec-1/
https://www.fixtrading.org/packages/fix-orchestra-technical-specification-draft-standard-v1-0/
https://www.fixtrading.org/packages/fix-orchestra-technical-specification-draft-standard-v1-0/
https://www.enterpriseintegrationpatterns.com/patterns/messaging/DurableSubscription.html
https://www.enterpriseintegrationpatterns.com/patterns/messaging/GuaranteedMessaging.html
https://www.fixtrading.org/standards/unsupported/fix-4-3/
https://www.fixtrading.org/standards/unsupported/fix-5-0/
https://www.fixtrading.org/standards/unsupported/fix-5-0-sp1/

	1 Scope
	2 Normative references
	3 Terms and definitions
	3.1 General terms and definitions
	3.1.1 session layer message
	3.1.2 application message
	3.1.3 message type
	3.1.4 valid FIX message
	3.1.5 FIX session processor
	3.1.6 initiator
	3.1.7 acceptor
	3.1.8 rules of engagement
	3.1.9 peer
	3.1.10 counterparty
	3.1.11 NextNumIn
	3.1.12 NextNumOut
	3.1.13 retransmission
	3.1.14 resend
	3.1.15 gap fill
	3.1.16 application version
	3.1.17 extension pack
	3.1.18 session profile
	3.1.19 CompID
	3.1.20 SubID
	3.1.21 LocationID
	3.1.22 transport layer connection
	3.1.23 in-band communication
	3.1.24 out-of-band communication
	3.1.25 TestRequestThreshold
	3.1.26 SendingTimeThreshold
	3.1.27 LogoutAckThreshold

	4 FIX session
	4.1 Sequence numbers
	4.2 Identifying the FIX session
	4.2.1 The FIX session profile
	4.2.2 Identification of FIX session peers
	4.2.3 Validation of SendingTime(52)
	4.2.4 Additional fields available for peer identification

	4.3 Establishing a FIX connection
	4.3.1 Transport layer requirements
	4.3.2 Using the TestMessageIndicator(464) to explicitly identify testing
	4.3.3 Application layer encryption
	4.3.4 Heartbeat interval
	4.3.5 Heartbeat interval determination
	4.3.5.1 Acceptor requires a specific heartbeat interval
	4.3.5.2 Acceptor requires initiator specify a value within a heartbeat interval range
	4.3.5.3 Acceptor accepts the initiator specified heartbeat interval

	4.3.6 Maximum message size
	4.3.7 Specifying application version
	4.3.8 Specifying supported message types
	4.3.9 Identification of application system and FIX session processor
	4.3.10 Responding to a request to establish a FIX session
	4.3.11 Initial synchronization of messages in a FIX connection
	4.3.12 Synchronization after successful logon

	4.4 Extended features for FIX session and FIX connection initiation
	4.4.1 Using NextExpectedMsgSeqNum(789) to synchronize a FIX session
	4.4.2 Using ResetSeqNumFlag(141) to reset FIX session for 24 hour connectivity
	4.4.3 Using ResetSeqNumFlag(141) to reset FIX session during FIX connection establishment
	4.4.4 Using initiator state to restore acceptor session state

	4.5 Message exchange during a FIX connection
	4.5.1 FIX connection keep alive (heartbeat)
	4.5.2 Garbled message processing
	4.5.3 Missing sequence number
	4.5.4 Rejecting invalid messages
	4.5.5 Test Request Processing

	4.6 FIX connection termination
	4.6.1 Normal logout processing
	4.6.2 Logout without acknowledgement from peer
	4.6.3 Logout with retransmission of missed messages
	4.6.4 When to terminate a FIX connection by terminating the transport layer connection instead of sending a Logout(35=5)

	4.7 Extended features for FIX connection Termination
	4.7.1 Using NextExpectedMsgSeqNum(789) when terminating FIX connection due to invalid MsgSeqNum(34)

	4.8 Message recovery
	4.8.1 Ordered message processing
	4.8.2 Request retransmission of messages
	4.8.3 Responding to a ResendRequest(35=2) message
	4.8.4 Possible duplicates
	4.8.5 Gap fill process
	4.8.5.1 Example using SequenceReset(35=4) to gap fill over multiple messages

	4.8.6 Sequence reset
	4.8.7 Processing inbound possible duplicate messages (PossDup(43) set to “Y”)
	4.8.8 Processing gaps when receiving FIX session layer messages

	4.9 Resending an unacknowledged application message
	4.9.1 The difference between application layer resend and session layer retransmission

	4.10 FIX session state matrix
	4.10.1 FIX logon process state transition diagram
	4.10.2 FIX logout process state transition diagram

	5 FIX session profiles
	5.1 FIX.4.2 session profile
	5.1.1 Profile identification
	5.1.2 Application version identification

	5.2 FIX4 session profile
	5.2.1 Profile identification
	5.2.2 Application version identification

	5.3 FIXT session profile
	5.3.1 Profile identification
	5.3.2 Multiple application version support over a single FIXT session
	5.3.3 Session default application version identification
	5.3.4 Message type default application version
	5.3.5 Explicit application version per message
	5.3.6 Use of extension packs
	5.3.7 Use of a custom application version

	5.4 Lightweight FIXT (LFIXT session profile)
	5.4.1 Profile identification
	5.4.2 Application version identification
	5.4.3 LFIXT transport layer requirements
	5.4.4 LFIXT compatible mode
	5.4.5 LFIXT succinct mode
	5.4.6 LFIXT and FIXT operating mode interoperability
	5.4.7 Validation of message sequence numbers
	5.4.8 Application layer recovery
	5.4.9 LFIXT initiator connects to LFIXT acceptor
	5.4.10 FIXT initiator connects to LFIXT acceptor (compatible mode)
	5.4.11 Receipt of ResendRequest(35=2) message from a FIXT peer
	5.4.12 Processing invalid messages

	6 FIX message routing
	6.1 Message routing details – one firm-to-one firm (point-to-point)
	6.2 Message routing details – third party message routing

	7 Transmitting alternatively encoded messages over a FIX session
	7.1 Use of Attachment group

	8 Components
	8.1 AttachmentGrp
	8.2 AttachmentKeywordGrp
	8.3 HopGrp
	8.4 MsgTypeGrp
	8.5 StandardHeader
	8.6 StandardTrailer

	9 Messages
	9.1 Heartbeat message
	9.2 TestRequest message
	9.3 ResendRequest message
	9.4 Reject message
	9.5 SequenceReset message
	9.6 Logout message
	9.7 Logon message
	9.8 XMLnonFIX message

	10 Fields
	11 Code sets
	11.1 ApplLevelRecoveryIndicatorCodeSet
	11.2 ApplVerIDCodeSet
	11.3 AttachmentEncodingTypeCodeSet
	11.4 EncryptMethodCodeSet
	11.5 GapFillFlagCodeSet
	11.6 MsgDirectionCodeSet
	11.7 MsgTypeCodeSet
	11.8 PossDupFlagCodeSet
	11.9 PossResendCodeSet
	11.10 ResetSeqNumFlagCodeSet
	11.11 SessionRejectReasonCodeSet
	11.12 SessionStatusCodeSet
	11.13 TestMessageIndicatorCodeSet

	Bibliography

