FIX/FIXML Implementation

Sam Johnson, David Rhodes
marcusevans professional training, February 2001
Introductions, Quickly

• Who are we, and why are we here?
 • What is TransactTools, anyway?

• Who are you?
Agenda

• Another Overview of FIX
 – Really quick, like 10 minutes

• FIXML and What It Really Means
 – 30 minutes

• Implementation: FIX-Enabling Your Business
 – 45 minutes

• Actually Getting Connected
 – 1 hour

• Betting the Business on FIX
 – 30 minutes
What is FIX, really?

• FIX is a peer-to-peer networking protocol with a very narrow focus: wholesale financial transactions.

• FIX was created before companies were all interconnected via the Internet and private networks.

• FIX was built with two fundamental objectives:
 – Reliability and timeliness of communication
 – Flexibility of business content
Overview of FIX (again) but from a Systems Perspective This Time
What is FIX, really?

- First, FIX is a transport-independent session protocol that guarantees reliable real-time delivery of data between two directly-connected points.
What is FIX, really?

- Second, FIX is a set of flexible and extensible business message formats.
A FIX engine is simply a piece of software. It maintains a network connection, creates and parses messages, and recovers if something goes wrong.
What’s Special about FIX 4.2?

- Number of fields almost doubled from 4.1
- Number of pages more than doubled
- Thankfully, the number of appendices doubled
- 18 more business messages
 - XML envelope (to wrap FIXML data)
 - Converts, Forex, Derivatives, Options, Bonds
 - Exchange support – Market Data, status
 - Japanese trading
So Then What is FIXML, really?

- FIXML is another, more structured way to format the FIX business messages.
FIXML and What It Really Means in the Grand Scheme of Things
Separation of Session and Business Layers

- With FIXML, the FIX Committee publicly acknowledged a need to think about the FIX session and application layers separately
 - Session can transport messages of any format
 - Application messages can be delivered in ways other than via the FIX Session
- And there’s an easy migration path from FIX: the old tag-value format can be used like an envelope for a FIXML message (new fields in 4.2)
Structured Business Messages

- XML introduces structure into the application message. For things like repeating groups of related fields, this is very helpful.

```xml
<repeating>
  <group>
    <field1></field1>
    <field2></field2>
  </group>
  <group>
    <field1></field1>
    <field2></field2>
  </group>
</repeating>
```

- Strictly speaking, an XML parser can validate that a FIXML message conforms to a DTD in terms of structure only. XML doesn’t understand data types.

```xml
<!ELEMENT StrikePrice (#PCDATA)>
<!ATTLIST StrikePrice
  FIXTag CDATA #FIXED "202"
  DataType CDATA #FIXED "float"
  Min CDATA #FIXED "0"
  Max CDATA #FIXED "99999999.9999"/>
```
A Document Type Definition (DTD) describes the conditions necessary for a well-formed XML document:

- Optional and required elements
- Structure and grouping of elements
- Attributes associated with elements

For example, HTML documents conform to a DTD

A validating parser (such as a web browser) can use a DTD to check an XML document to make sure that it’s correctly constructed.
And, Eventually, XML Schema

- XML doesn’t help much with validating data inside a document—it thinks everything is a string
- Schema initiatives aim to provide content validation by defining data types
- It’s unclear which, if any, will prevail
 - XML-Data (Microsoft)
 - DDML (Data Definition ML)
 - DCD’s (Document Content Definitions)
 - SOX (Schema for Object-oriented XML)
The Downside

- FIXML messages are large-ish

- Implications for performance in high-volume applications aren’t well understood
 - Transfer of larger messages
 - Structure (and content) validation at parse-time

- Nobody is doing it yet
Implementation:
FIX-Enabling Your Business
• A lot of FIX engines turn out really to be FIX libraries

• FIX engines are applications that stand alone and provide an interface to internal applications.
 – Financial Fusion, Javelin

• FIX libraries require that either an interface shell or an application be built around them. They aren’t stand-alone applications themselves.
 – Cameron, B2B ITS, and most others
Vendor Solutions

- Pricing: 3 tiers of solution
- Market share: 2 leaders

- How much can one pay for a FIX engine?

- hmmm… Why?
High-Availability FIX Engines

- Several vendors now offer premium “HA” versions of their servers. These are all built pretty much the same
 - As messages are received and sent, they are written to a common persistent store and also propagated among connectors (consistent state)
 - Redundancy at FIX machine and software levels, guaranteeing there’s always an entrance to the FIX system

* may not be persistent
Making the Build vs. Buy Decision

- It used to be about deciding whether you wanted to depend on a vendor product for FIX messaging

<table>
<thead>
<tr>
<th>+</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saves development cost and time</td>
<td>Little or no control over or access to source code</td>
</tr>
<tr>
<td>Vendor responsible for support, enhancements, upgrades</td>
<td>Customer is at the mercy of the vendor</td>
</tr>
</tbody>
</table>

- More and more, as vendors begin to make source code available, it’s about deciding whether to reinvent the wheel

<table>
<thead>
<tr>
<th>+</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saves development cost and time</td>
<td>Customer has to learn and support somebody else’s code</td>
</tr>
</tbody>
</table>
A Solution that Scales with the Organization

- In many cases, the objective is to FIX-enable an organization rather than a single application.

- Typically, the FIX gateway is configured as a router and interfaced with the company’s existing messaging.
Actually Getting Connected
Differences in Trading Partners Interfaces

- **Multiple versions of FIX**
 - While many firms have moved to 4.1 or 4.2, the vast majority are still on 4.0
 - If reliant on a third-party order management system or FIX engine, may not be able to move until the vendor does
 - Therefore, may need to support the same business functionality across more than one version of FIX
Differences in Trading Partners Interfaces

- **Multiple Configurations**
 - Even with a specification, capabilities may differ across firms
 - Often due to different interpretations of the standard, especially in FIX 4.0
 - **OrderQty on cancel/replace**
 - Some see it as the leaves qty, while some see it as the total order qty
 - Sometimes due to simply not following the spec
 - **SendingTime in UTC**
 - Some do eastern time or another time zone, making time comparisons difficult
 - **OrderQty on order cancels**
 - Some send 0, some send the remaining quantity, while spec requires original quantity
Physical Connectivity

- TCP/IP most commonly used transport protocol for FIX
- While testing is often done over the Internet, production configuration is generally over private connections
 - Direct connection
 - Frame relay
 - T-1
 - ISDN (often as a backup)
 - Third-party networks
 - IXnet
 - TNS/MacGregor
 - TradeRoute
 - Virtual private network (VPN)
 - Addresses security, but not performance or reliability issues of the Internet
Physical Connectivity

- Firewall configuration
 - Host firm production servers may be behind firewall, even in private connection configurations
 - Must open access from client hosts or networks to internal hosts or networks
 - Policy decision as to how tight this security should be
 - Client firm may need to open access to specific IP addresses and ports
 - For testing over the Internet
 - For production access, if firewall is between FIX servers and private connection
What About Encryption?

- PGP/DES-MD5 and other current encryption algorithms for FIX are somewhat antiquated.
- SSL/TLS (Secure Sockets Layer/Transport Layer Security) is currently being explored as an option for FIX encryption.
- SSL/TLS proxying provides a simple way to handle FIX encryption, as it simply fronts existing FIX servers, encrypting messages from and decrypting messages to FIX servers.
Trading Networks

- Trading networks, such as TradeRoute and GlobalCrossing, offer more than just TCP/IP connectivity.
- Hub-and-spoke model reduces some of the complexities of FIX connectivity, but has drawbacks when compared to point-to-point trading links:
 - Security. All transactions flowing through one hub increase the chance of being compromised.
 - Performance. Hub itself can become a bottleneck.
 - Reliability. Hub itself can be a single point of failure.
 - Functionality. Reduces the application-level functionality of FIX to a least-common-denominator across participants.
Business-Level Compatibility

• Physical connecting customers and understanding their FIX version and configuration is just the beginning

• Must rigorously test all critical functionality
 – Orders
 • Required parameters and allowed values (e.g. Side, HandlInst)
 • Optional parameters and allowed values (e.g. ExecInst, TimeInForce)
 • Optional order types (e.g. Stop, Stop Limit)
 – Cancels
 • Simple
 • After partially filled
 • Partially filled while pending cancel
 • Unsolicited cancels
Business-Level Compatibility

• Changes (cancel/replace)
 – Simple
 – After partially filled
 – Filled while change is pending
Session-level compatibility

• Verify what happens when things get out-of-whack
 – Stop heartbeats on client and host, simulating connectivity problems
 – Send sequence numbers that are too low and see how FIX engines respond
 – Send sequence numbers that are too high and see how the FIX engines recover
 – Create fills “offline” and see how the client FIX engine deals with messages it thinks it missed while not logged on
How do I test all of this?

- Most of this compatibility testing is done manually (!)
 - Resource-intensive. Requires at least two people, one from the client and one from the host company, usually on the phone in front of FIX engines and log files
 - Time-consuming. Creating these scenarios, testing them, and reviewing and communicating the results takes a significant amount of time
 - Error-prone. Since it is a person reviewing the output of the FIX engine, it is not possible to test a large number of scenarios and a number of variables within each scenario without making a mistake or two.
How much testing do I need?

- The more testing you can do, the better.
 - Ultimately saves time and money for both parties
 - Less time is required in production support handling common problems
 - Difficulty logging in again after a lost connection due to problems handling resend requests or gap fills
 - Fewer trades are disputed
 - No more tracking down partial fills that a client’s FIX engine missed
 - No more disputing the intent of a cancel/replace on order quantity
Automating the Testing Process: Archipelago

- Archipelago was the first to launch a fully-automated FIX interface certification service consisting of:
 - 7 required session-level tests
 - 7 required orderflow tests
 - 30 optional orderflow tests
 - 4 required cancel tests
 - 15 optional cancel/replace tests

- Archipelago no longer does any manual certification testing with trading partners
Production Support and Monitoring

- Successful large-scale point-to-point connectivity requires a great deal of monitoring
 - More than just server and operating system tools
 - Need proactive, rules-based notification of a variety of events that can occur in a high-volume trading environment
 - Connections that have dropped more than X times in some period
 - Cancels or changes that have been pending for more than Y minutes
 - Partial fills send with OrdStatus=6 for customers A, B and C who have had trouble with those in the past
Betting the Business on FIX …?
First of all…

- There are too many egos in this business to ever settle on one protocol. Even if it were the right thing to do.
Can FIX Scale to 1000 Connections?

- It can, but not very easily.

- FIX connectivity requires not only that peers speak the same language, but also that they can have meaningful business conversations
 - Trading partner testing is critical

- FIX was designed as a persistent point-to-point protocol, and doesn’t fail-over well
 - Production network monitoring is critical
Let’s Revisit the whole Peer-to-Peer Thing

- A lot has happened since FIX was originally created
 - WebMethods: proprietary XML-based solutions for stateless business-to-business transactions
 - Gnutella, Freenet, OpenCOLA: distributed, real-time content routing among peers
 - Napster: centralized directory combined with a peer-to-peer transaction platform
Alternate Session Layers

- The fact that FIX relies on a predetermined, persistent machine-to-machine connection is pretty limiting.

- The idea of separating application messages from the underlying transport (introduced with FIXML in 4.2) has prompted users to experiment with alternate transports:
 - http: polling messages like web pages
 - smtp: mail-based routing
 - beep: standardized reliable point-to-point layer
 - www.bxxp.org
 - instant messenger: anyone??
What is FLIRT, and can it work?

- Simple Object Access Protocol (SOAP) is an open standard for transporting XML documents over HTTP.
 - This is cool because HTTP is pretty firewall-proof
 - This is not so cool for FIX because HTTP is a one-way protocol and FIX is a two-way protocol
 - Even so, the right software can implement a pretty good two-way session on top of HTTP

- FLIRT is FIXML over HTTP, so technically it’s not exactly the same thing as SOAP but really there’s no difference.
Lessons from Napster

• Napster uses a dynamic, central directory to facilitate getting peers connected.

• This is an example of what some p2p luminaries call “distributed enough”
But Whatever Shall We Do In The Mean Time?

• Find a better solution for trading partner interface and capability discovery

• Create better, more automated solutions for peer-to-peer testing, all the way up to the business transaction

• Build peer network monitoring and notification architectures that aren’t blind beyond the firewall
Thanks!

135 West 29th Street, 9th fl
New York, New York 10001

Sam Johnson
212-244-1343 NY

David Rhodes
708-763-0406 Chicago

www.transacttools.net