

FIX Adapted for STreaming - FASTsm Protocol Technical
Overview

Written by Kevin Houstoun, Consultant HSBC, FPL Global Technical Committee Co-Chair

Table of Contents

Executive Summary ...1
Background ..1

What is FIX?..1
What is FASTsm?..2
Spiralling Market Data Volumes – A business problem ...2

Solution Overview ...3
FASTsm – A technical solution ..4
The reference code...6

Summary ..6
References..6

Executive Summary

FIX Protocol Limited (FPL), the custodians of the FIX Protocol, have launched a new protocol
called FASTsm, FIX Adapted for STreaming. FIX messages, like any self describing message
syntax, have a relatively high overhead of message descriptor. The FASTsm Protocol is a way
of eliminating this overhead by exchanging the message description separately from the
message. This, along with a number of other data compression techniques, allows FASTsm to
address the explosion in market data volumes and the technical challenges of transmitting
them.

FIX Protocol Limited developed the FASTsm Protocol by empirically testing a number of
different compression techniques on market data from a number of the worlds leading
exchanges in a sponsored proof of concept. The sponsors were Archipelago Exchange,
Chicago Mercantile Exchange, International Securities Exchange, London Stock Exchange,
Microsoft and Singapore Stock Exchange.

The FASTsm Protocol has been demonstrated to be a highly efficient solution to the problem
of spiralling market data volumes and is already being adopted by a number of the worlds
leading exchanges. FIX Protocol Limited, drawing on previous experience of managing an
open protocol, is publishing a reference implementation in a number of languages: C, C# and
Java.

Background

What is FIX?

The Financial Information eXchange protocol was invented by Salomon Brothers and Fidelity
Investments in the early 1990’s to address the problem of communicating securities orders
and their executions in the wholesale banking industry. Since the early 90’s FIX has been
expanded, through 7 protocol releases to cover all asset classes and extend its reach from

 FASTSM Protocol Technical Overview

 Page 2 of 6 28/07/2006

trade initiation to trade confirmation. FIX is today the most widely adopted protocol in the
wholesale markets and the defacto standard for all institutional trading globally.

What is FASTsm?

By around 2003 FIX had reached such a position in the wholesale markets that it was
becoming a victim of its own success. The ease with which market participants, money
managers, investment banks, hedge funds, exchanges and matching mechanisms could
connect was leading to a spiral in market data volumes as ever increasing numbers of
electronic orders begat ever increasing volumes of market data.

Spiralling Market Data Volumes – A business problem

This trend is evident in the following illustrations. The first shows the volume of market data
messages in the OPRA (Option Price Reporting Authority) consolidated feed, which
represents all US derivatives business. The second shows the London Stock Exchange
traded volumes in one of the worlds most advanced equity platforms. For more details see
London Stock Exchange case study.

OPRA Peak 1 Minute based on SIAC data
 (FIF Projections using Past Average % Change of 5.9%)

-

25,000

50,000

75,000

100,000

125,000

150,000

175,000

200,000

19
99

Feb-0
0

Apr-
00

Ju
n-0

0

Aug
-00

Oct-
00

Dec
-00

Feb-0
1

Apr-
01

Ju
n-0

1

Aug
-01

Oct-
01

Dec
-01

Feb-0
2

Apr-
02

Ju
n-0

2

Aug
-02

Oct-
02

Dec
-02

Feb-0
3

Apr-
03

Ju
n-0

3

Aug
-03

Oct-
03

Dec
-03

Feb-0
4

Apr-
04

Ju
n-0

4

Aug
-04

Oct-
04

Dec
-04

Feb-0
5

Apr-
05

Ju
n-0

5

Aug
-05

Oct-
05

Dec
-05

Feb-0
6

Apr-
06

Ju
n-0

6

Aug
-06

 FASTSM Protocol Technical Overview

 Page 3 of 6 28/07/2006

The increasing volumes of market data were causing delays, preventing market data from
reaching traders in a timely fashion, thus disrupting their ability to trade. This was because
ever increasing amounts of data were being pumped down the existing connections. In the
short term this was addressed by exchange clients buying more lines. In the longer term a
number of the worlds leading exchanges started discussing what could be done and
contemplated rolling out a new series of proprietary exchange market data mechanisms.

To address these problems the FIX Protocol Global Technical Committee set up the Market
Data Optimisation Working group with the following mission:

“To define standard services for the reliable transport of FIX market data messages using
implicit tagging and support for multicast and point to point topologies”

This mission was to be fulfilled by approaching the problem with some basic aims:

• Consider additional optimization techniques that may further enhance market data
delivery such as compression

• Garner participation and representation from all industry segments in order to develop
a true standards-based solution

• Create a common, flexible, straightforward solution that will reduce integration costs
• Make allowance for non-market data related information to take advantage of the

same optimizations

Solution Overview

In 2005 FPL performed a proof of concept around these techniques that demonstrated that
the FASTsm Protocol could deliver significant bandwidth savings with reductions in market
data latency and the decision was made to launch the new protocol.

Quotes, Trades and Orders Per Day

0

500000

1000000

1500000

2000000

2500000

03
/1

2/
20

01

11
/0

1/
20

02

18
/0

2/
20

02

26
/0

3/
20

02

03
/0

5/
20

02

11
/0

6/
20

02

17
/0

7/
20

02

22
/0

8/
20

02

30
/0

9/
20

02

05
/1

1/
20

02

11
/1

2/
20

02

22
/0

1/
20

03

27
/0

2/
20

03

04
/0

4/
20

03

14
/0

5/
20

03

19
/0

6/
20

03

28
/0

7/
20

03

02
/0

9/
20

03

08
/1

0/
20

03

13
/1

1/
20

03

19
/1

2/
20

03

29
/0

1/
20

04

05
/0

3/
20

04

14
/0

4/
20

04

20
/0

5/
20

04

25
/0

6/
20

04

03
/0

8/
20

04

08
/0

9/
20

04

15
/1

0/
20

04

22
/1

1/
20

04

28
/1

2/
20

04

02
/0

2/
20

05

10
/0

3/
20

05

19
/0

4/
20

05

25
/0

5/
20

05

30
/0

6/
20

05

05
/0

8/
20

05

12
/0

9/
20

05

18
/1

0/
20

05

23
/1

1/
20

05

30
/1

2/
20

05

Date

To
ta

l M
es

sa
ge

s
pe

r D
ay

Orders
Trades
Quotes
Modify

 FASTSM Protocol Technical Overview

 Page 4 of 6 28/07/2006

FASTsm – a technical solution

Broadly the design of the final FASTsm Protocol is a series of layers as shown in the diagram
below:

Application messages are the market data that need to be transmitted. Market data messages
are handed into a Field Encoding layer that removes redundant data before they are handed
off to the Transfer Encoding layer. The Transfer Encoding layer applies a number of
techniques to compress the data into a minimum number of bytes. Once compressed the data
is transmitted either using UDP in a multicast environment or TCP in a peer to peer session
based protocol. Session Control governs such aspects of the communication as initiating and
terminating FAST sessions, and error reporting.

The Field Encoding layer removes redundant information by assigning multiple messages to
the same logical frame, called a data stream in FASTsm, and using a template that describes
the data format and optimisations. This allows FASTsm to exploit similarities between
consecutive messages to remove the need to transmit all the data content of a message.

The relationships are “Copy” when the value is a copy of the data transmitted in the previous
message, “Increment” when you simply increment the value from the previous message,
“Delta” when only the difference is sent, “Default where a default value is described in the
template and the value is only sent if different” and “None” when there is no relationship and
all the data on each message is sent. Message Templates describe the layout of each
message type and define which field encoding technique is to be used on each field. A final
type of encoding supported by the message template is “Constant” and this represents a field
that always takes a particular value. These constant values are always simply added back
into each message on decoding.

This message template is described in an XML template

The effect of coding a message according to the rules described in the message template can
be seen on the extract of three messages. The diagram below illustrate this

<template name="ExampleOrder">
 <messageRef name="NewOrderSingle"/>
 <string name="BeginStr"> <constant value="FIX.4.4"/> </string>
 <u32 name="SeqNum"> <increment/> </u32>
 <string name="SenderID"> <copy/> </string>
 <string name="SendingTime"> <delta/> </string>
 <decimal name="Price"> <delta/> </decimal>
 <string name="Symbol"> <copy/> </string>
</template>

 FASTSM Protocol Technical Overview

 Page 5 of 6 28/07/2006

The Transfer Encoding layer compresses the data into the minimum physical space required
on the wire. This compression is achieved utilizing a number of techniques.

In traditional FIX messages each field takes the form “Tag=Value<SOH>” where the tag is a
number representing which field is being transmitted and the value is the actual data content.
The ascii <SOH> character is used as a byte delimiter to terminate the field.

The first area of redundancy is the opening of every field with “Tag=”. These are mostly 2, 3
or 4 digit tags so they represent 3, 4 or 5 bytes of data that can be eliminated by exchanging
a template that describes the message structure. This technique is known as implicit tagging
as the tags become implicit in the data.

At the data field level a stop bit is used instead of FIX’s traditional <SOH> separator byte.
Thus 7 bits of each byte are used to transmit data and the eighth bit is used to indicate if the
end of the field has been reached. For market data where the average field length is
approximately 2 bytes this saves approximate 33% of the bandwidth.

At the message level the first bytes of each message are a presence map indicating which
fields are present in this particular message. If a field is shown as being transmitted in the
presence map the transmitted field values then follow the map. If no fields are shown as
present, all fields are derived from previous messages and the next byte is the start of the
presence map for the next message.

Another technique, called binary encoding is used on number, this basically renders the
number into binary across the 7 data bits in each byte. Thus a number less than 2^7-1, (127)
will only occupy one byte, a number between 2^7 and 2^7*2 – 1 (16,383), will occupy two
bytes etc. This saves space on many numbers, for example 16 represented as ASCII requires
two bytes, binary encoded it only requires one.

The diagram below illustrates the effect of transfer encoding

BeginStr SeqNum SenderID SendingTime Price Symbol
8=FIX.4.4|34=10000|49=CLIENT1|52=20060126-3:06:58.100|44=1200|55=FOO1|
8=FIX.4.4|34=10001|49=CLIENT1|52=20060126-3:06:58.200|44=1210|55=FOO1|
8=FIX.4.4|34=10002|49=CLIENT1|52=20060126-3:06:58.300|44=1190|55=BAR2|

Original size 71 bytes

10000	CLIENT1	20060126-13:06:58.100	1200	FOO1
		200	10	
		300	-20	BAR2

Constant Copy Increment Delta

Copy

Delta

 FASTSM Protocol Technical Overview

 Page 6 of 6 28/07/2006

The reference code

FPL had experience of launching a protocol before and felt that one of the problems with any
protocol specification was that it was open to interpretation and that any ambiguity is both
difficult to spot and interpreted in at least two different ways. Indeed a large part of the
maturing process of FPL has been the clarification of those ambiguities. To avoid this pitfall in
the FASTsm Protocol FPL decided to publish a reference implementation. The prototype has
been developed in C and it was anticipated that most implementations would be in C due to
its speed.

Summary

FPL has launched a new protocol called FASTsm. The FASTsm Protocol is designed to stream
financial market data using as little bandwidth and introducing as little processing latency as
possible.

References

This whitepaper is largely based on material presented at a series of FAST briefings by FIX
Protocol Limited. The original material can be found on the http://www.fixprotocol.org/fast

BeginStr SeqNum SenderID SendingTime Price Symbol
8=FIX.4.4|34=10000|49=CLIENT1|52=20060126-3:06:58.100|44=1200|55=FOO1|
8=FIX.4.4|34=10001|49=CLIENT1|52=20060126-3:06:58.200|44=1210|55=FOO1|
8=FIX.4.4|34=10002|49=CLIENT1|52=20060126-3:06:58.300|44=1190|55=BAR2|

Original size 71 bytes

FIX.4.4|10000|CLIENT1|20060126-13:06:58.100|1200|FOO1|
FIX.4.4|10001|CLIENT1|20060126-13:06:58.200|1210|FOO1|
FIX.4.4|10002|CLIENT1|20060126-13:06:58.300|1190|BAR2|

FIX.4.4nnCLIENT120060126-13:06:58.100nnFOO1
FIX.4.4nnCLIENT120060126-13:06:58.200nnFOO1
FIX.4.4nnCLIENT120060126-13:06:58.300nnBAR2

Implicit Tagging
54 bytes (-24%)

SBIT Encoding
48 bytes (-33%)

SBIT + Binary Encoding
43 bytes (-39%)

FIX.4.410000CLIENT120060126-13:06:58.1001200FOO1
FIX.4.410001CLIENT120060126-13:06:58.2001210FOO1
FIX.4.410002CLIENT120060126-13:06:58.3001190BAR2

