FAST version 1.2 Extension Page 1 (11)

FAST version 1.2 Extension Proposal
2009-01-18

Version 10

* Copyright FIX Protocol Limited *



FAST version 1.2 Extension Page 2 (11)

Table of Contents

o] Y - | 1 =T PSP OPPTTPPTTN 3
) UL o} a1 E D Lo Yol U s 41T | PSRN 3
D1 A o T 4 o] o OO OO TP UPSPPROPRTt 3
COPYIIBNT NOLICE .uviiiiiiiiie ittt e et e e et e e e e s bteeeesabaeeesstaeeesastaeeeansaeeesssaeesanses sarseeesanss 3
1N o] =Tt AR O UPR PP 3
D11 =13 =T O OO PSSP PR UPSTTPRRPPRIOt 3

NEeW TYPe DefiNitionN SYNTAX ......uuiiiiii it e e e e e s cree e e e e s e s eatbaeeeeaeeesnbtateeeeeeeassstasseaaassnnnsrnns 4

Enumeration (SiNGle-value field) ........eei it s e e e ba e e e e abae e e e nbe e e e eaneeas 5
23 Tol €= o1 U1 o NSRRI 5
o) oY 1Y | SR PSR 5
EE= a0 o] LI L= ) TSP 5

Y A (L LR V7 | [T =1 o | SRR 6
2T 1ol <=4 o U o o EOS SR PSPR 6
[0 oo Y- | FO U URPRNS 6
B aa] o] LI L= SRR 6

Bit GroUp (PACKEA fIEI) ..uveiieieiee ettt ettt e e et e e e et e e e e e bbeeeeeataeeeeastaeaesssaeesensaeeesastaeaesss senes 7
28 1ol <=0 o U 1o o EOS SRR 7
o] o T 1Y | PRSP 7
LT 000 o] LT3 - D R 7

LT Y] QN D E L= T Y 1T PP PP PPPPPPPPPPPRRN 9
23 Tod €= 01U o S URPRRN 9
o) oY 1Y | USRS 9
L1000 o] LT} 2 - D S 9

2 ToTo) L=F T o I T - I Y] =S 10
2T o] <={ o U 1o o HOS PRSPt 10
0T oo Y- | U UUPRRN 10
=T aa] o] NI} gL = SRR 10

(O 0 F=Y oY =d I o 11 o] VSRSt 11

* Copyright FIX Protocol Limited *



FAST version 1.2 Extension Page 3 (11)

Front Matter

Status of this Document

This document specifies proposed extensions to a standards protocol for the FIX community, and requests
discussion and suggestions for improvements.

Distribution

Distribution of this document is unlimited.

Copyright Notice
Copyright OFIX Protocol Ltd. (2009)

Abstract

This document proposes a number of extensions to FAST 1.1, and aims to serve as a basis for a discussion
within mdowg (market data optimization working group) about the pros and cons of different aspects of
the proposed extensions.

Disclaimer

THE INFORMATION CONTAINED HEREIN AND THE FINANCIAL INFORMATION EXCHANGE PROTOCOL
(COLLECTIVELY THE “FIX PROTOCOL”) ARE PROVIDED “AS IS” AND NO PERSON OR ENTITY ASSOCIATED
WITH THE FIX PROTOCOL MAKES ANY REPRESENTATION OR WARRANTY, EXPRESS OR IMPLIED, AS TO THE
FIX PROTOCOL (OR THE RESULTS TO BE OBTAINED BY THE USE THEREOF) OR ANY OTHER MATTER AND
EACH SUCH PERSON AND ENTITY SPECIFICALLY DISCLAIMS ANY WARRANTY OF ORIGINALITY, ACCURACY,
COMPLETENESS, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. SUCH PERSONS AND
ENTITIES DO NOT WARRANT THAT THE FIX PROTOCOL WILL CONFORM TO ANY DESCRIPTION THEREOF OR
BE FREE OF ERRORS. THE ENTIRE RISK OF ANY USE OF THE FIX PROTOCOL IS ASSUMED BY THE USER.

NO PERSON OR ENTITY ASSOCIATED WITH THE FIX PROTOCOL SHALL HAVE ANY LIABILITY FOR DAMAGES
OF ANY KIND ARISING IN ANY MANNER OUT OF OR IN CONNECTION WITH ANY USER’S USE OF (OR ANY
INABILITY TO USE) THE FIX PROTOCOL, WHETHER DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR
CONSEQUENTIAL (INCLUDING, WITHOUT LIMITATION, LOSS OF DATA, LOSS OF USE, CLAIMS OF THIRD
PARTIES OR LOST PROFITS OR REVENUES OR OTHER ECONOMIC LOSS), WHETHER IN TORT (INCLUDING
NEGLIGENCE AND STRICT LIABILITY), CONTRACT OR OTHERWISE, WHETHER OR NOT ANY SUCH PERSON OR
ENTITY HAS BEEN ADVISED OF, OR OTHERWISE MIGHT HAVE ANTICIPATED THE POSSIBILITY, OF SUCH
DAMAGES.

No proprietary or ownership interest of any kind is granted with respect to the FIX Protocol (or any rights
therein) except as expressly set out in FPL’s copyright and acceptable use policy.

* Copyright FIX Protocol Limited *



FAST version 1.2 Extension Page 4 (11)

New Type Definition Syntax

We propose a new syntax for type definitions that allows naming of types so that a type can be specified
once and then be used repeatedly. The other proposed extensions in this document can be used without
the new type definition syntax.

We propose to add the constructs <define>, <field> and <type>. Define accepts the normal type
elements without the name attribute that is used in type elements when declaring fields in a template.

A plain string is defined as:
<define name="MyString”> <string/> </define>

A string with copy operator is defined as:
<define name=""CopyString”> <string> <copy/> </string> </define>

An enumeration with two values, Red and Green, is defined as:

<define name="Colors”>
<enum>
<element name=""Red”’/>
<element name="Green”/>
</enum>
</define>

To use these definitions in a template you then specify:

<template name="MyTpl”>
<field name="Fo0’> <type name="MyString”/> </field>
<field name="Bar’> <type name="CopyString”/> </field>
<field name="Colors”> <type name="Colors”/> </field>
</template>

The content of a field may in itself be a type declaration:
<field name="Fo0’> <string/> </field>

In order to be backwards compatible with the current template syntax we let:

<nnn name="’Xxx’’> <zzz/> </nnn>

be syntactic sugar for:
<field name=""xxx’> <nnn> <zzz/> </nnn> </field>

So:
<string name="Fo0”’> <copy/> </string>

translates to:
<field name=""Fo0”> <string> <copy/> </string> </field>

* Copyright FIX Protocol Limited *



FAST version 1.2 Extension Page 5 (11)

Enumeration (single-value field)

Background

FIX as well as other protocols make use of fields with a fixed set of alternative values. These fields may
either be single-value (an enumerated value) or multi-value (a set of values).

Proposal

We propose to add enumerations to the standard in order to support single-value fields with a fixed
number of values. The enum proposal does not require any change to the base representation as SBIT-
encoded fields are used to encode enum field values.

For example, a field can take one of four values, M1, M2, M3 and M4. The four values are assigned the
encoded values 0, 1, 2 and 3 respectively. The field can then have any one of the encoded values 0-3.

If the field is nullable, then NULL is assigned the encoded value 0 (zero) analogously with how nullable
integers are defined. In the example above with an enumerated field with a range of four values, the
encoded values would then be 1, 2, 3 and 4 respectively with zero reserved for the NULL value.

An enum can be used in a bit group (defined in later in this document) in which case it will be encoded with
the minimum number of bits needed to represent all elements in the enum definition.

Template Syntax

Variant 1 — using an anonymous enum

<template name=""tl1”>
<enum name="MatchType”>

<element name="M1"/> assigned the encoded value 0
<element name=""M2"/> assigned the encoded value 1
<copy/>
</enum>
</template>

Variant 2 — with a separate type definition of a named enum data type

<define name="MatchTypeEnum”>
<enum>
<element name=""M1""/>
<element name="M2"/>
<copy/>
</enum>
</define>

<template name="t3”>
<field name="MatchType”> <type name="MatchTypeEnum”/> </field>
</template>

* Copyright FIX Protocol Limited *



FAST version 1.2 Extension Page 6 (11)

Set (multi-value field)

Background

FIX as well as other protocols make use of fields with a fixed set of alternative values. These fields may
either be single-value (an enumerated value) or multi-value (a set of values).

Proposal

We propose to add sets to the standard in order to support multi-value fields with a fixed number of
values. The set proposal does not require any change to the base representation as SBIT-encoded fields are
used to encode multi-value field values.

For example, a field can have one or more of four values A, B, C and D. The four values are assigned values
of 1, 2, 4 and 8, i.e. each value is represented by a different bit. The values can then be added together to
form combinations of the four values. For Example, A and C will yield 1 + 4 = 5 as the combined encoded
field value.

If the field is nullable, then NULL is assigned the encoded value 0 (zero) analogously with how nullable
integers are defined. A set can be used in a bit group in which case it will be encoded with the minimum
number of bits needed to represent all elements in the set definition.

Template Syntax

Variant 1 — using an anonymous set

<template name=""t1’>
<set name=""TradeCond”>

<element name="A""/> assigned the encoded value 1
<element name="’B’/> assigned the encoded value 2
<copy/>
</set>
</template>

Variant 2 — using a separate type definition of a named set data type

<define name="TradeCondSet”>
<set>
<element name="B’/>
<copy/>
</set>
</define>

<template name=""t3”>
<field name="TradeCond”> <type name="TradeCondSet”/> </field>
</template>

* Copyright FIX Protocol Limited *



FAST version 1.2 Extension Page 7 (11)

Bit Group (packed field)
Background

FIX as well as other protocols frequently include fields with small value ranges. The minimum standard
length of a field in FAST 1.1 is 8 bits including the stop bit.

Proposal

We propose to add a bit group type to the FAST standard. A bit group packs two or more fields into one
SBIT-encoded field. Each of the bit fields will have a fixed size that is less than 8 bits. Supported bit field
types are enums, sets, and 2-7 bit signed integers and 1-7 bit unsigned integers. The new integer types are
named int2-int7 and ulnt1-Uint7. The one bit version of signed int is excluded as it makes no sense to have
an integer quantity with a sign bit only.

A bit group will use the ordinary wire representation of an SBIT-encoded field. Fields within the group will
be assigned space from left to right. For example; a bit group with three fields, A (2 bits), B (1 bit) and C (1
bit), will occupy a total of four bits or one SBIT-encoded byte. The fields will be placed within the byte as:
‘SAABCxxx’, where S is the SBIT and xxx are three unassigned bits that must be set to zero. Enum and Set
fields in a bit group will be encoded with the minimum number of bits needed to represent all values of the
type.

A bit group can use multiple bytes and an individual field in a bit group may span the boundary between
two bytes. Let’s assume that a bit group contains three fields; A (5 bits), B (6 bits) and C (3 bits). The first
two bits of field B will be assigned to the two rightmost data bits in the first byte while the remaining four
bits will be assigned to the leftmost four data bits in the second byte of the bit group wire representation.

Template Syntax

Variant 1 — using an anonymous bit group

<template name=""tl1”>
<bitGroup name="Levellnfo’”>

<enum name="’UpdateAction”> will use 2 bits
<element name="0""/>
<element name="1"/>
<element name=""2"/>

</enum>

<enum name=EntryType”> will use 1 bit
<element name="’1"/>

</enum>

<enum name=""CFICode”> will use 1 bit
<element name="0C”/>
<element name=""0P’/>

</enum>

<ulnt3 name="PricelLevel”/> will use 3 bits - range is 0-7
<copy/>
</bitGroup>
</template>

Variant 2 — using a separate type definition of a named bit group data type

<define name="’UpdateActionEnum’>
<enum>
<element name="0"/>
<element name=""1"/>
<element name="2"/>

* Copyright FIX Protocol Limited *



FAST version 1.2 Extension

</enum>
</define>

<define name="EntryTypeEnum”>
<enum>
<element name="0""/>
<element name="1"/>
</enum>
</define>

<define name="CFICodeEnum”>
<enum>
<element name=""0C’/>
<element name=""0P’/>
</enum>
</define>

<define name="LevelInfoBitGroup”>
<bitGroup>
<field name="UpdateAction”> <type

name=""UpdateActionEnum”/> </field>

<field name="EntryType”> <type name="EntryTypeEnum”/> </field>
<field name="CFlCode”> <type name="CFICodeEnum”/> </fTield>
<field name="PriceLevel”> <ulnt3/> </field>
<copy/>
</bitGroup>
</define>

<template name=""t2>

<field name="LevelInfo”> <type name="LevellnfoBitGroup”/> </field>

</template>

* Copyright FIX Protocol Limited *

Page 8 (11)



FAST version 1.2 Extension Page 9 (11)

Timestamp Data Type
Background

FIX has several time related data types. The FAST specification should therefore provide native support for
timestamp fields.

Proposal

We propose to add a timestamp type to the FAST standard. A timestamp is an integer that represents a
number of time units since an epoch. Negative numbers can be used to define timestamps before the
chosen epoch.

The default epoch is the UNIX epoch (1970-01-01 00:00:00 GMT). It is possible to specify a different epoch.
As a special case, an epoch of ’today”’ yields a timestamp value that represents time units since
midnight, providing a convenient representation of FIX UTCTimeOnly.

The supported time units are; day, second, millisecond, microsecond and nanosecond.
The default time unit is milliseconds.

By supporting different time units and different epochs, we can efficiently represent timestamps with a
granularity that meets different application level needs. For example; FIX UTCTimeOnly and UTCDateOnly
can be efficiently represented when a full timestamp is not needed.

No new wire format is needed. The existing SBIT-encoded integer type is used to represent all variants of
the timestamp field type.

Template Syntax

A list of the supported units
<define name="t0’> <timestamp unit="day”/> </define>
<define name="tl1”> <timestamp unit="second”/> </define>
<define name="1t2”> <timestamp unit="millisecond”/> </define>
<define name="t3”’> <timestamp unit="microsecond”/> </define>
<define name=""t4”’> <timestamp unit="nanosecond”/> </define>

A unit of “day” corresponds to UTCDateOnly
<define name="t5”> <timestamp unit="day”/> </define>

An epoch of “today” corresponds to UTCTimeOnly
<define name="t6’> <timestamp unit="second” epoch=""today”/> </define>

The default epoch is the UNIX epoch and the default unit is millisecond
<define name="t7”> <timestamp/> </define>

* Copyright FIX Protocol Limited *



FAST version 1.2 Extension Page 10 (11)

Boolean Data Type
Background

The FIX specification contains a number of boolean fields. The FAST specification should therefore provide
native support for boolean fields.

Proposal

We propose to add a boolean data type which has one of two possible values, true or false. A boolean field
is represented as an unsigned integer with the value 0 meaning false and the value 1 meaning true. A
boolean value can be a member of a bit group in which case it will use one bit (0/1). A boolean field with
optional presence will use a nullable representation analogously with a nullable integer representation.
NULL will be represented as a 0 (zero), false as 1 (one) and true as 2 (two). A nullable boolean field will use
2 bits in a bit group.

Template Syntax

Variant 1 — using a boolean directly

<template name="tl1”>
<boolean name=”UpdatesLastPaid” presence="optional”/>
</template>

Variant 2 — using a defined boolean type
<define name="UpdatesLastPaidFlag”> <boolean/> </define>
<template name=""t2”>
<field name="UpdatesLastPaid” presence="optional’>
<type name=UpdatesLastPaidFlag”/>
</field>
</template>

* Copyright FIX Protocol Limited *



FAST version 1.2 Extension

Change History

Page 11 (11)

Date Version | Author Description
2009-01-17 9 Rolf Andersson Changes following review by the mdowg members
2009-01-18 10 Rolf Andersson Release version for submission to the GTC

* Copyright FIX Protocol Limited *




