

Encoding FIX using JSON

Release Candidate 1 – User Guide

Document Revision 0.4.0 - November 17, 2016

THIS DOCUMENT IS A RELEASE CANDIDATE FOR A PROPOSED FIX TECHNICAL STANDARD. A RELEASE CANDIDATE HAS BEEN
APPROVED BY THE GLOBAL TECHNICAL COMMITTEE AS AN INITIAL STEP IN CREATING A NEW FIX TECHNICAL STANDARD. POTENTIAL
ADOPTERS ARE STRONGLY ENCOURAGED TO BEGIN WORKING WITH THE RELEASE CANDIDATE AND TO PROVIDE FEEDBACK TO THE
GLOBAL TECHNICAL COMMITTEE AND THE WORKING GROUP THAT SUBMITTED THE PROPOSAL. THE FEEDBACK TO THE RELEASE
CANDIDATE WILL DETERMINE IF ANOTHER REVISION AND RELEASE CANDIDATE IS NECESSARY OR IF THE RELEASE CANDIDATE CAN
BE PROMOTED TO BECOME A FIX TECHNICAL STANDARD DRAFT.

© Copyright 2016 FIX Protocol Limited

Encoding FIX Using JSON - User Guide

Encoding_FIX_using_JSON-User_Guide - RC1.docx November 17, 2016 - 0.4.0

 Copyright, 2016, FIX Protocol, Limited Page 2 of 13

DISCLAIMER

THE INFORMATION CONTAINED HEREIN AND THE FINANCIAL INFORMATION EXCHANGE PROTOCOL
(COLLECTIVELY, THE "FIX PROTOCOL") ARE PROVIDED "AS IS" AND NO PERSON OR ENTITY
ASSOCIATED WITH THE FIX PROTOCOL MAKES ANY REPRESENTATION OR WARRANTY, EXPRESS OR
IMPLIED, AS TO THE FIX PROTOCOL (OR THE RESULTS TO BE OBTAINED BY THE USE THEREOF) OR ANY
OTHER MATTER AND EACH SUCH PERSON AND ENTITY SPECIFICALLY DISCLAIMS ANY WARRANTY OF
ORIGINALITY, ACCURACY, COMPLETENESS, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. SUCH PERSONS AND ENTITIES DO NOT WARRANT THAT THE FIX PROTOCOL WILL
CONFORM TO ANY DESCRIPTION THEREOF OR BE FREE OF ERRORS. THE ENTIRE RISK OF ANY USE OF
THE FIX PROTOCOL IS ASSUMED BY THE USER.

NO PERSON OR ENTITY ASSOCIATED WITH THE FIX PROTOCOL SHALL HAVE ANY LIABILITY FOR
DAMAGES OF ANY KIND ARISING IN ANY MANNER OUT OF OR IN CONNECTION WITH ANY USER’S USE
OF (OR ANY INABILITY TO USE) THE FIX PROTOCOL, WHETHER DIRECT, INDIRECT, INCIDENTAL,
SPECIAL OR CONSEQUENTIAL (INCLUDING, WITHOUT LIMITATION, LOSS OF DATA, LOSS OF USE,
CLAIMS OF THIRD PARTIES OR LOST PROFITS OR REVENUES OR OTHER ECONOMIC LOSS), WHETHER
IN TORT (INCLUDING NEGLIGENCE AND STRICT LIABILITY), CONTRACT OR OTHERWISE, WHETHER OR
NOT ANY SUCH PERSON OR ENTITY HAS BEEN ADVISED OF, OR OTHERWISE MIGHT HAVE
ANTICIPATED THE POSSIBILITY OF, SUCH DAMAGES.

DRAFT OR NOT RATIFIED PROPOSALS (REFER TO PROPOSAL STATUS AND/OR SUBMISSION STATUS
ON COVER PAGE) ARE PROVIDED "AS IS" TO INTERESTED PARTIES FOR DISCUSSION ONLY. PARTIES
THAT CHOOSE TO IMPLEMENT THIS DRAFT PROPOSAL DO SO AT THEIR OWN RISK. IT IS A DRAFT
DOCUMENT AND MAY BE UPDATED, REPLACED, OR MADE OBSOLETE BY OTHER DOCUMENTS AT ANY
TIME. THE FPL GLOBAL TECHNICAL COMMITTEE WILL NOT ALLOW EARLY IMPLEMENTATION TO
CONSTRAIN ITS ABILITY TO MAKE CHANGES TO THIS SPECIFICATION PRIOR TO FINAL RELEASE. IT IS
INAPPROPRIATE TO USE FPL WORKING DRAFTS AS REFERENCE MATERIAL OR TO CITE THEM AS
OTHER THAN “WORKS IN PROGRESS”. THE FPL GLOBAL TECHNICAL COMMITTEE WILL ISSUE, UPON
COMPLETION OF REVIEW AND RATIFICATION, AN OFFICIAL STATUS ("APPROVED") OF/FOR THE
PROPOSAL AND A RELEASE NUMBER.

No proprietary or ownership interest of any kind is granted with respect to the FIX Protocol (or any
rights therein).

Copyright 2013-2016 FIX Protocol Ltd., all rights reserved.

Encoding FIX using JSON by FIX Protocol Ltd. is licensed under a Creative Commons Attribution-
NoDerivatives 4.0 International License.

Based on a work at https://github.com/FIXTradingCommunity/fix-json-encoding-spec

http://www.fixtradingcommunity.org/
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://github.com/FIXTradingCommunity/fix-json-encoding-spec
http://creativecommons.org/licenses/by-nd/4.0/

Encoding FIX Using JSON - User Guide

Encoding_FIX_using_JSON-User_Guide - RC1.docx November 17, 2016 - 0.4.0

 Copyright, 2016, FIX Protocol, Limited Page 3 of 13

Document History

Revision Date Author Revision Comments

0.1.0 2016-04-
14

Don Mendelson Initial draft.

0.2.0 2016-09-
12

Mike Gatny, Connamara
Systems

Updated according to Working Group feedback.

0.3.0 2016-11-
04

Mike Gatny, Connamara
Systems

Recommend EP206 for sub-millisecond date/time
precision.

0.4.0 2016-11-
17

Mike Gatny, Connamara
Systems

Updated Name vs SymbolicName rationale
according to GTC feedback.

Encoding FIX Using JSON - User Guide

Encoding_FIX_using_JSON-User_Guide - RC1.docx November 17, 2016 - 0.4.0

 Copyright, 2016, FIX Protocol, Limited Page 4 of 13

Table of Contents

Document History .. 3

1 Introduction ... 5

1.1 Objective ... 5

1.2 JavaScript and JSON .. 6

1.3 JSON Elements .. 6

1.4 Standards References.. 6

1.5 Issues for Mapping JSON to FIX ... 6

1.5.1 Dates and Times .. 7

1.5.2 Decimal Representation .. 7

1.5.3 Enumerations .. 7

1.5.4 No tags .. 7

1.5.5 No Templates .. 8

1.6 Constraint .. 8

2 Field Encoding ... 8

2.1 Data Types of Values ... 8

2.2 Names ... 9

2.3 Field Encoding ... 9

2.3.1 Byte order .. 9

3 Message Structure .. 9

3.1 Field Presence ... 9

3.2 Field Order ... 9

3.3 Message Framing .. 9

3.4 Header, Body, and Trailer ... 11

3.5 Message Type .. 11

3.7 Repeating Groups .. 12

3.7.1 Empty group .. 12

3.7.2 Nested groups ... 12

4 Sample Messages .. 13

5 Unsupported Features .. 13

5.1 Metadata ... 13

5.2 Versioning.. 13

Encoding FIX Using JSON - User Guide

Encoding_FIX_using_JSON-User_Guide - RC1.docx November 17, 2016 - 0.4.0

 Copyright, 2016, FIX Protocol, Limited Page 5 of 13

1 Introduction

1.1 Objective

The objective of this user guide is to support development of web applications that require FIX
semantics. JSON is another alternative to existing FIX encodings, including tag=value, FIXML, FAST,
SBE and Google Protocol Buffers.

JSON encoding of FIX is optimized for operations in a web browser without the need for other
software distribution to clients.

JSON encoding is also optimized for conversion to and from other FIX encodings. It is therefore a goal
of this encoding not to discard any information that would be useful during such conversions.

It is not a goal to specify a template or schema format here, however it is a goal not to preclude the
use of one.

On the scale of human-to-server web interactions, JSON provides acceptable performance. However,
is not a goal to optimize JSON encoding to execute at very low latency like FIX binary encodings.

Encoding FIX Using JSON - User Guide

Encoding_FIX_using_JSON-User_Guide - RC1.docx November 17, 2016 - 0.4.0

 Copyright, 2016, FIX Protocol, Limited Page 6 of 13

1.2 JavaScript and JSON

JavaScript is the predominant language for developing client-side logic in web applications. JavaScript
is supported by all popular web browsers. A built-in feature of the language is JavaScript Object
Notation (JSON). JSON syntax is identical to the code for creating JavaScript objects. It minimizes
development effort while avoiding the complexity and greed for resources of XML parsers and the
like.

An important characteristic of JSON is that it is self-describing. Elements have readable symbolic
names. Therefore, message handlers can process message elements without looking up metadata in
a data dictionary or schema.

JSON wire format can readily be parsed and encoded in other programming languages. There are
several popular libraries for that purpose in Java, C#, C++, and so forth. These JSON implementations
interoperate with JavaScript.

1.3 JSON Elements

JSON is so simple that the standard’s authors foresaw no need for versioning since it is never
expected to change. To summarize:

 An array is an ordered list of values.
 An object is a collection of name/value pairs. Names are strings.
 A value can be an object, array, number, string, boolean, or null.
 Numbers are signed. There is no syntactic distinction between integer and floating point

values. In practice, most implementations store all numbers as double precision binary
floating point.

 Strings are Unicode, with a few rules for escaping special values.
 Booleans are true or false.
 Arbitrary levels of object nesting are allowed.

1.4 Standards References

JavaScript is formalized as Standard ECMA-262 ECMAScript® 2015 Language Specification.

JSON is standardized by Standard ECMA-404 The JSON Data Interchange Format. The JSON standard is
normative for this user guide.

1.5 Issues for Mapping JSON to FIX

This user guide provides standardized solutions to the following issues.

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-404.htm

Encoding FIX Using JSON - User Guide

Encoding_FIX_using_JSON-User_Guide - RC1.docx November 17, 2016 - 0.4.0

 Copyright, 2016, FIX Protocol, Limited Page 7 of 13

1.5.1 Dates and Times

JSON has no explicit provision for encoding dates or times. However, most languages/platforms that
support JSON also support conversion of date/time to and from strings in ISO 8601 format (e.g. the
JavaScript Date object).

Another potential issue is that languages/platforms only support millisecond precision (e.g. the
JavaScript Date object), while FIX timestamps may require microsecond or nanosecond precision.
Given that any timestamps captured on the client side are limited by PC clock precision, millisecond
precision should be sufficient for web applications. When finer than millisecond precision is required,
applications should adhere to the recommendations of FIX.5.0 SP2 EP206: Clock Synchronization Data

Types Enhancements.

1.5.2 Decimal Representation

JSON does not provide a numeric data type that is suitable for storing prices, quantities, etc.
Furthermore, since most implementations (including JavaScript) store all JSON numeric values using a
binary floating point data type, attempts to represent decimals as scaled integers, as was done with
FIX binary encodings, are unfortunately pointless.

1.5.3 Enumerations

Enumerations of valid values are needed for codes in FIX fields, but JSON has no special syntax for
enumerations.

Languages/platforms that support JSON may also lack support for enumerations (e.g. JavaScript).
Although it may be possible in such cases to emulate an enumeration with an associative array of
symbolic names and values, deserialization of a code in JSON does not automatically associate to its
symbolic name, and serialized strings or numbers are not constrained to valid values.

1.5.4 No tags

JSON does not have a built-in feature equivalent to FIX field tags or component IDs. This user guide
suggests using symbolic names directly to avoid lookup by tag. The reduction in processing is offset
by longer messages on the wire. This seems an acceptable trade-off since a web UI is unlikely to
capture very large numbers of fields per message.

http://www.fixtradingcommunity.org/pg/extensions/extension-pack?ExtensionID=EP206
http://www.fixtradingcommunity.org/pg/extensions/extension-pack?ExtensionID=EP206

Encoding FIX Using JSON - User Guide

Encoding_FIX_using_JSON-User_Guide - RC1.docx November 17, 2016 - 0.4.0

 Copyright, 2016, FIX Protocol, Limited Page 8 of 13

1.5.5 No Templates

JSON serialization and deserialization are not controlled by an external template or schema, only by
an object that is being serialized. Each object is sui generis; JSON grew out of JavaScript, which does
not have classes that objects must conform to, as realized by Java, C# and C++. It does have a
prototype feature, but JavaScript objects are quite malleable. Properties and functions can be added
on the fly. Nevertheless, it is possible to generate JSON objects corresponding to messages defined by
the FIX Repository or FIX Orchestra.

1.6 Constraint

This user guide will depend only on standard JavaScript features that are implemented in most
browsers and the JSON standard, without dependency on third-party frameworks.

2 Field Encoding

2.1 Data Types of Values

This user guide specifies that all the semantic data types of FIX protocol should be mapped to JSON
string values in order to maximize the ability of applications to simply display the data.

Application logic must be tailored to handle data with proper semantics if it does anything with the
data other than simply display it. Since there is no feature to convey the semantic type in-band, the
actual FIX type must be referenced at development time. It is recommended that applications use
either FIX Repository or FIX Orchestra for this purpose.

JSON does not provide a numeric data type that is suitable for storing prices, quantities, etc.
Furthermore, most implementations (e.g. JavaScript) store all JSON numeric values using a binary
floating point data type. Using JSON string values to represent FIX protocol numeric types
circumvents this issue, and allows applications to choose the most appropriate data type provided by
their language/platform (e.g. the Java BigDecimal type).

Encoding FIX Using JSON - User Guide

Encoding_FIX_using_JSON-User_Guide - RC1.docx November 17, 2016 - 0.4.0

 Copyright, 2016, FIX Protocol, Limited Page 9 of 13

2.2 Names

Names of fields must be encoded exactly as they are spelled and capitalized in the FIX Repository.

The field’s Name is used instead of its Tag number to enable applications to display a human-
readable form with little or no logic and without requiring a data dictionary in the browser. However,
for user-defined fields, the Tag number may be used instead of the Name.

The field’s Value is used instead of its SymbolicName to optimize for interoperability with and
convertibility to/from the other standard encodings of FIX (e.g. FIXML, SBE, GPB).

2.3 Field Encoding

Fields are encoded in accordance with the JSON standard as name/value pairs. Values must be
serialized as JSON strings.

Example of a FIX field encoded as a JSON name/value pair:

FIX tag=value Encoding JSON Encoding

31=47.50 "LastPx":
"47.50"

54=1 "Side": "1"

2.3.1 Byte order

Since all JSON values, including numbers, are serialized as their string equivalent, there is no issue
with byte order (endianness).

3 Message Structure

3.1 Field Presence

Although JSON does have a special value for null, it need not be used for a non-populated optional
FIX field. Like FIX tag=value encoding, optional fields that are not populated are simply not serialized
on the wire.

3.2 Field Order

Like FIX tag=value encoding, order of fields within a message or repeating group entry is not
significant. All fields are accessed by name.

3.3 Message Framing

Each message is serialized as a JSON object, contained by opening and closing braces. A message may
contain other JSON objects, specifically, repeating groups (see below).

Encoding FIX Using JSON - User Guide

Encoding_FIX_using_JSON-User_Guide - RC1.docx November 17, 2016 - 0.4.0

 Copyright, 2016, FIX Protocol, Limited Page 10 of 13

Since this encoding is designed for use with web protocols, message framing is generally handled by
the session layer protocol, e.g. HTTP or websockets. In these cases, no additional framing protocol is
needed.

For cases where an additional framing protocol is needed, applications may use FIX Simple Open
Framing Header (SOFH).

Encoding FIX Using JSON - User Guide

Encoding_FIX_using_JSON-User_Guide - RC1.docx November 17, 2016 - 0.4.0

 Copyright, 2016, FIX Protocol, Limited Page 11 of 13

3.4 Header, Body, and Trailer

Every JSON message must have top-level fields named “Header”, “Body”, and “Trailer”:

{

 "Header": {},

 "Body": {},

 "Trailer": {}

}

This structure serves the goal of not discarding information that is useful when converting to/from
other FIX encodings.

JSON encoding does not include a “CheckSum” field since it is unlikely to be useful at best, and likely
to be incorrect at worst (e.g. if copied over from another FIX encoding).

3.5 Message Type

To identify a message on the wire, every JSON message should have a “MsgType” field in the
“Header” sub-object. The value should be a valid Value of the “MsgType” field as defined in the FIX
repository:

Example for a “NewOrderSingle” message:

{

 "Header": {

 "MsgType": "D"

 }

}

Encoding FIX Using JSON - User Guide

Encoding_FIX_using_JSON-User_Guide - RC1.docx November 17, 2016 - 0.4.0

 Copyright, 2016, FIX Protocol, Limited Page 12 of 13

3.7 Repeating Groups

A repeating group is serialized as an array of JSON objects, each containing the fields that belong to a
repeating group entry. A JSON array is surrounded by square brackets, and each entry is separated by
a comma. Each entry is its own JSON object. Because some of the fields may be optional, not all
entries are required to contain the same fields.

The count of entries is implicit to the array structure. There is no explicit NumInGroup field in the
JSON encoding.

The name of a repeating group is the name of the associated NumInGroup field name as it appears in
the FIX Repository.

Example of a “NoMDEntries” group with two entries:

{

 "Header": {

 "MsgType": "W"

 },

 "Body": {

 "NoMDEntries": [

 { "MDEntryType": "0", "MDEntryPx": "2179.75", "MDEntrySize": "175" },

 { "MDEntryType": "1", "MDEntryPx": "2180.25", "MDEntrySize": "125" }

]

 }

}

3.7.1 Empty group

An empty repeating group may be serialized to simplify conversion to/from other FIX encodings.

3.7.2 Nested groups

A JSON object for a repeating group entry may contain other objects to represent nested repeating
groups.

Encoding FIX Using JSON - User Guide

Encoding_FIX_using_JSON-User_Guide - RC1.docx November 17, 2016 - 0.4.0

 Copyright, 2016, FIX Protocol, Limited Page 13 of 13

4 Sample Messages
MarketDataSnapshotFullRefresh

{

 "Header": {

 "BeginString": "FIXT.1.1",

 "MsgType": "W",

 "MsgSeqNum": "4567",

 "SenderCompID": "SENDER",

 "TargetCompID": "TARGET",

 "SendingTime": "20160802-21:14:38.717"

 },

 "Body": {

 "SecurityIDSource": "8",

 "SecurityID": "ESU6",

 "MDReqID": "789",

 "NoMDEntries": [

 { "MDEntryType": "0", "MDEntryPx": "1.50", "MDEntrySize": "75", "MDEntryTime": "21:14:38.688" },

 { "MDEntryType": "1", "MDEntryPx": "1.75", "MDEntrySize": "25", "MDEntryTime": "21:14:38.688" }

]

 },

 "Trailer": {

 }

}

5 Unsupported Features

5.1 Metadata

This user guide only specifies wire format. There is no provision for external or internal metadata
features.

5.2 Versioning

Explicit versioning is not supported by the JSON encoding of FIX. Generally, this is unnecessary since
web sites serve client-side code all with page contents. Since the server controls encoding on both
sides, they should always be internally consistent.

