

A Basic User’s Guide to Implementing
The FAST ProtocolSM

Version 1.0
January, 2006

FIX Protocol Limited
A Basic User’s Guide to Implementing FAST

DISCLAIMER

THE INFORMATION CONTAINED HEREIN AND THE FINANCIAL INFORMATION
EXCHANGE PROTOCOL (COLLECTIVELY, THE "FIX PROTOCOL") ARE PROVIDED
"AS IS" AND NO PERSON OR ENTITY ASSOCIATED WITH THE FIX PROTOCOL
MAKES ANY REPRESENTATION OR WARRANTY, EXPRESS OR IMPLIED, AS TO THE
FIX PROTOCOL (OR THE RESULTS TO BE OBTAINED BY THE USE THEREOF) OR
ANY OTHER MATTER AND EACH SUCH PERSON AND ENTITY SPECIFICALLY
DISCLAIMS ANY WARRANTY OF ORIGINALITY, ACCURACY, COMPLETENESS,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. SUCH PERSONS
AND ENTITIES DO NOT WARRANT THAT THE FIX PROTOCOL WILL CONFORM TO
ANY DESCRIPTION THEREOF OR BE FREE OF ERRORS. THE ENTIRE RISK OF ANY
USE OF THE FIX PROTOCOL IS ASSUMED BY THE USER.

NO PERSON OR ENTITY ASSOCIATED WITH THE FIX PROTOCOL SHALL HAVE ANY
LIABILITY FOR DAMAGES OF ANY KIND ARISING IN ANY MANNER OUT OF OR IN
CONNECTION WITH ANY USER'S USE OF (OR ANY INABILITY TO USE) THE FIX
PROTOCOL, WHETHER DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR
CONSEQUENTIAL (INCLUDING, WITHOUT LIMITATION, LOSS OF DATA, LOSS OF
USE, CLAIMS OF THIRD PARTIES OR LOST PROFITS OR REVENUES OR OTHER
ECONOMIC LOSS), WHETHER IN TORT (INCLUDING NEGLIGENCE AND STRICT
LIABILITY), CONTRACT OR OTHERWISE, WHETHER OR NOT ANY SUCH PERSON OR
ENTITY HAS BEEN ADVISED OF, OR OTHERWISE MIGHT HAVE ANTICIPATED THE
POSSIBILITY OF, SUCH DAMAGES.

DRAFT OR NOT RATIFIED PROPOSALS (REFER TO PROPOSAL STATUS AND/OR
SUBMISSION STATUS ON COVER PAGE) ARE PROVIDED "AS-IS" TO INTERESTED
PARTIES FOR DISCUSSION ONLY. PARTIES THAT CHOOSE TO IMPLEMENT THIS
DRAFT PROPOSAL DO SO AT THEIR OWN RISK. IT IS A DRAFT DOCUMENT AND
MAY BE UPDATED, REPLACED, OR MADE OBSOLETE BY OTHER DOCUMENTS AT
ANY TIME. THE FPL GLOBAL TECHNICAL COMMITTEE WILL NOT ALLOW EARLY
IMPLEMENTATION TO CONSTRAIN ITS ABILITY TO MAKE CHANGES TO THIS
SPECIFICATION PRIOR TO FINAL RELEASE. IT IS INAPPROPRIATE TO USE FPL
WORKING DRAFTS AS REFERENCE MATERIAL OR TO CITE THEM AS OTHER THAN
“WORKS IN PROGRESS”. THE FPL GLOBAL TECHNICAL COMMITTEE WILL ISSUE,
UPON COMPLETION OF REVIEW AND RATIFICATION, AN OFFICIAL STATUS
("APPROVED") TO THE PROPOSAL AND A RELEASE NUMBER.

No proprietary or ownership interest of any kind is granted with respect to the FIX Protocol (or
any rights therein).

Copyright 2003-2005 FIX Protocol Limited, all rights reserved

Copyright © FIX Protocol Ltd. Page 2 January, 2006

FIX Protocol Limited
A Basic User’s Guide to Implementing FAST

Table of Contents

Document History ... 4
Purpose... 5
Abstract.. 5
How FAST Works... 5

Templates.. 6
Field Encoding .. 7
Transfer Encoding (Serialization)... 7

Templates in FAST ... 8
What are Templates?... 8
How FAST Uses Templates.. 8
Template Definition and Syntax ... 9
Template Definition Using Compact Notation ... 9
Market Data Template .. 10
XML Template Notation... 11
Template Operator Contexts ... 12
Scope Reset Context ... 13
NULL Value Usage .. 13
Considerations in Specifying a Template ... 13
Template ID .. 14
Template Exchange... 14

Using FAST in a Broadcast Environment.. 15
Sending Data via UDP.. 15
Receiving Data via UDP... 15

Using FAST in a Point-to-point Environment ... 16
Sending Data via TCP-IP.. 17
Receiving Data via TCP-IP... 17

FAST Reference Code .. 17

Copyright © FIX Protocol Ltd. Page 3 January, 2006

FIX Protocol Limited
A Basic User’s Guide to Implementing FAST

Document History

Revision Date Author Revision Comments
Version 0.1 Nov 19, 2005 Matt Simpson Initial Draft
Version 0.2 Nov 21, 2005 Matt Simpson Second Draft
Version 0.3 Jan 6, 2006 Matt Simpson
Version 0.4 Jan 19, 2006 Rich Shriver Recommendations for changes to

the content and external references
Version 0.5 Jan 23, 2006 Matt Simpson Additional notes and changes
Version 0.6 Jan 24, 2006 Matt Simpson Added comments on decoding

errors

Copyright © FIX Protocol Ltd. Page 4 January, 2006

FIX Protocol Limited
A Basic User’s Guide to Implementing FAST

Purpose
The purpose of this document is to describe the proper use of the FAST Protocol in a one-way
exchange of data, from a sender to one or more receivers as commonly found in market data
applications. The document will address both broadcast and point-to-point configurations. This
document is not a tutorial or a technical specification. Please see the following links for this
information.
FAST Tutorial: pending
FAST Field Encoding Specification:
http://fixprotocol.org/documents/2254/FAST%20Field%20Encoding%20Specification%201.0.doc

FAST Transfer Encoding Specification:
http://fixprotocol.org/documents/2255/FAST%20Transfer%20Encoding%20Specification%201.0.d
oc

Later versions will describe the proper use of FAST in a two-way exchange of data and the
proper application in a FIX Session.

Abstract
The FAST Protocol has been developed as part of the FIX Market Data Optimization Working
Group. FAST is an acronym for FIX Adapted for STreaming and is designed to optimize
communication in the electronic exchange of financial data. FAST, at its core, is a data
compression algorithm which when properly implemented will significantly reduce bandwidth
requirements and latency between sender and receiver. FAST works especially well at improving
performance during periods of peak message rates. For more information on the benefits and
real-world results from FAST Protocol implementations, please refer to the Proof of Concept Test
Results.

 Phase 1A Test Results
 Phase 1B Test Results

FAST is an extension of the base FIX specification and any discussion of data structures will
assume FIX message formats. However, a basic implementation of FAST does not require or
assume a FIX implementation. FAST exists as a stand alone specification which can be used
within either broadcast or point-to-point transports.

FAST is also intended to be used as an extension of the FIX session layer, but this document
does not currently address this usage. The following discussion will be concerned with the all the
practical aspects of implementing FAST in a one-way broadcast or point-to-point configuration.

How FAST Works
The FAST Protocol has been designed to be a flexible and highly extensible solution for high
volume, low latency data dissemination. The FAST Protocol is an encoding algorithm which
reduces the size of a data stream on two-levels. First, a technique referred to as Field Encoding
allows data affinities of a stream to be leveraged and redundant data to be removed. Second,
Transfer Encoding of the remaining data is accomplished through binary encoding which also
draws on self-describing field lengths and bit maps indicating the presence or absence of fields.

The FAST Protocol is predicated on familiarity with the content of a data feed. This is done
through the use of templates which describe the content and characteristics of the data to be
encoded or decoded. Templates inform the encoder/decoder of the operations to be used in the
encoding and decoding process. Templates will be discussed in greater detail later in this
document.

Copyright © FIX Protocol Ltd. Page 5 January, 2006

http://fixprotocol.org/documents/2254/FAST Field Encoding Specification 1.0.doc
http://fixprotocol.org/documents/2255/FAST Transfer Encoding Specification 1.0.doc
http://fixprotocol.org/documents/2255/FAST Transfer Encoding Specification 1.0.doc

FIX Protocol Limited
A Basic User’s Guide to Implementing FAST

The principal of content-awareness not only allows FAST to achieve high levels of data
compression but also allows data be compressed with extremely low processing overhead and
latency. Data can be encoded and decoded very rapidly causing negligible levels of processing
latency. Additionally, compression decreases the amount of data that has to be transferred,
resulting in decreased transfer latency.

In general, the reduction in transfer latency greatly outweighs the increase in processing latency
and produces a significant improvement in overall latency. FAST provides performance gains that
are markedly better than what can be achieved with an uncompressed feed or compression using
other methods. The impact can be defined as:

Increase in processing latency minus decrease in transfer latency

The diagram below illustrates the layers of the FAST Protocol in a simple configuration from a
sending application to a receiving application.

Figure 1 - FAST Protocol Components

Templates
The message template is a fundamental component of the FAST Protocol message exchange
that was established and developed as part of the FIX Implicit Tagging concept. A template
uniquely identifies an ordered collection of fields and optionally includes notation corresponding to
the field encoding and transfer encoding rules. A template can be represented in machine
readable forms as in compact notation or xml, or simply as a bilateral agreement between the
parties and supported in text documentation as many of the exchange data feeds provide today.
Templates will be discussed in greater detail later in this document.

Copyright © FIX Protocol Ltd. Page 6 January, 2006

FIX Protocol Limited
A Basic User’s Guide to Implementing FAST

Field Encoding
Compression of data relies on removing redundancy in the encoding of information. Traditionally,
FIX encodes data by using a tag=value construct. In some applications, this format creates a
large overhead.
This specification documents opportunities to implement efficient field level encoding by taking
advantage of knowledge about the values of successive instances of a field within a message
and between messages.

For more information on field encoding, please refer to the FAST Field Encoding Specifications at
http://fixprotocol.org/documents/2254/FAST%20Field%20Encoding%20Specification%201.0.doc

Transfer Encoding (Serialization)
The use of binary representation in the form of numbers and strings with an embedded stop bit in
each data byte and a presence map that indicates presence or absence of individual fields in a
message. The encoding and decoding process is assumed to have access to a message
template specification.

For more information on Transfer Encoding, please refer to the FAST Transfer Encoding
Specifications at
http://fixprotocol.org/documents/2255/FAST%20Transfer%20Encoding%20Specification%201.0.d
oc

Copyright © FIX Protocol Ltd. Page 7 January, 2006

http://fixprotocol.org/documents/2254/FAST Field Encoding Specification 1.0.doc
http://fixprotocol.org/documents/2255/FAST Transfer Encoding Specification 1.0.doc
http://fixprotocol.org/documents/2255/FAST Transfer Encoding Specification 1.0.doc

FIX Protocol Limited
A Basic User’s Guide to Implementing FAST

Templates in FAST

What are Templates?
Templates are used to represent the structure of the data that is to be encoded. A template
represents a logical unit of data as it is transmitted from sender to receiver. In other words, a
template is used to represent a specific message type. When planning to encode a data feed a
user should begin by converting standard message formats to templates.

All message types must be expressed in the proper template format. This will be discussed
below. A template specifies the all fields included in a message as well as the sequence of those
fields. Additionally, a template may also support repeating groups which allows a single message
to efficiently convey multiple instructions; trades, quotes, etc.

Template Definition Approaches
There are two primary approaches used when defining templates for a market data feed. The first
approach defines one template per message type. Each template is specifically tailored for a
given message type. This has the advantage of maximizing data compression since each
message type can be optimally encoded. However, it also requires the added complexity of
managing multiple templates per feed as well as potentially expanding the scope of the “operator
context” to a “global” level such that a field encoding can occur across multiple message types.
There will be more discussion on this concept below.

The second approach is to define a generic template which can be used to describe multiple
message types. In this approach all the fields from a set of message types are included in the
template. When a message does not contain a field in the template it will use a reserved value to
indicate that no data value for that field is present. This generic template approach is one that
works well with FIX market data messages which supports multiple entry types (bids, asks,
trades, hig/lows, etc) in a single message. This will also be discussed in greater detail below.

Messages that do not conform to the specified template will be considered invalid and be
unreadable by FAST. An invalid message is one that has additional fields, missing fields, or
provides fields out of sequence.

How FAST Uses Templates
The FAST Protocol encodes and decodes on a field by field basis and cannot function without a
template to provide the necessary information for each field. Templates provide content-
awareness with respect to a data feed and instruct FAST how to encode or decode each field
within a message.

Templates provide critical information for both field encoding and serialization operations. Field
Encoding instructions are conveyed by the template to the FAST Codec which performs the
appropriate field encoding operations. Data type descriptions are also specified in the template
and inform the Serializer as to whether a field is a string, an integer, or a decimal value. The
Serializer will then perform the appropriate serialization operation based on that data type.

It is important to note that FAST functions as a state machine and must know which field values
to keep in memory. FAST compares the current value of a field to the prior value of that field and
determines if the new value can be copy coded, delta valued, or incremented. Field Encoding
instructions carried in the template convey this information.

Copyright © FIX Protocol Ltd. Page 8 January, 2006

FIX Protocol Limited
A Basic User’s Guide to Implementing FAST

Template Definition and Syntax
Templates are defined using a standard syntax that can be interpreted by FAST. In general, it is
recommended that an API layer be used to load templates and make them available to the core
encoder. Templates should be defined using a standard set of symbols that are used to express
the characteristics of the data. These are:

 fields
 field encoding instructions
 data types

The recommendation and assumption is that templates will be based on a FIX message format,
although templates may also be used to describe any proprietary message format.

In a standard FIX implementation fields are represented using tag numbers. In a non-FIX
implementation field names may be used instead of tag numbers although it is recommended that
custom tag numbers be used.

Template Definition Using Compact Notation
Compact notation is straightforward way to define a template using tag number or field name, a
field encoding operation symbol, and data type symbol. It allows information regarding a FAST
data structure to be conveyed in easy to understand meta data. While compact notation provides
benefits due to its simplicity it is not an extensible solution and has known limitations. XML
Template Definition described below is a more complete solution but requires knowledge of XML
documents and schemas.

The field encoding operators that are valid for use in a template are shown in Table1 below using
compact notation

Table 1 Compact Notation - Field Encoding Operators
Entry Description

 ! Default Coding – default value per template

 = Copy Coding – copy prior value

 + Increment Coding – increment prior value

 - Delta Coding – numeric or string differential

@ Constant Value Coding - constant value specified in template

* Derived Value Coding – implies field values

The data type descriptors that are valid for use in a template are shown in Table 2 below using
compact notation

Table 2 Compact Notations - Data Type Descriptors
Entry Description

 s String data type

 u Unsigned integer data type

Copyright © FIX Protocol Ltd. Page 9 January, 2006

FIX Protocol Limited
A Basic User’s Guide to Implementing FAST

 U Unsigned integer data type supporting a NULL value

 i Signed integer data type

 I Signed integer data type supporting a NULL value

 F Scaled number data type

 n Composite scaled number

 v Byte vector data type

Template Structure
The proper structure for forming tags, field encoding operators and data type descriptors into a
template field entry is shown below:

((tag number)(data type)(field encoding operator))

Several of these field occurrences strung together form a template. A delimiter symbol of “|” is
used to separate the occurrences

Market Data Template
Now let’s use these symbols in an actual template. The example below shows a typical template
that has been defined based on the FIX Market Data Incremental Refresh message (35=X). Note
that the “|” symbol represents a basic field separator, “<” represents the start of a repeating
group, and “>” represents the end of a repeating group.

Co

8s!FIX.4.4|9u|35s!X|49s=|34u+1|268u
<279u=|269s=|55s=|167s=|270F-|271F-|346u-|276s=|277s=>
pyright © FIX Protocol Ltd. Page 10 January, 2006

FIX Protocol Limited
A Basic User’s Guide to Implementing FAST

The following table provides a field-by-field account of the template:

Table 3 – Sample Template Definition
Template
Entry

FIX Field Name Field
Encode
Operation

Data
Type

Description of Operation

8s!FIX4.4 BeginString Default
Value

String Default BeginString to the string
value of “FIX4.4”

9u BodyLength None Unsigned
integer

Always explicitly specify the value
of BodyLength

35s!X MessageType Default
Value

string Default MessageType to the string
value of “X”

49s= SenderCompID Copy Code String Copy SenderCompID from the prior
occurrence

34u+1 SequenceNumber Increment Unsigned
integer

Increment SequenceNumber by +1
from the prior occurrence

268u NoMDEntries None Unsigned
integer

Always explicitly specify the value
of NoMDEntries

279u= MDUpdateAction Copy Code Unsigned
Integer

Copy MDUpdateAction from the
prior occurrence

269s= MDEntryType CopyCode String Copy MDEntryType from the prior
occurrence

55s= Symbol CopyCode String Copy Symbol from the prior
occurrence

167s= SecurityType CopyCode String Copy SecurityType from the prior
occurrence

270F- MDEntryPrice Delta
Value

Scaled
Number

Calculate the difference from the
prior occurrence of MDEntryPrice

271F- MDEntrySize Delta
Value

Scaled
Number

Calculate the difference from the
prior occurrence of MDEntryPrice

346u- NumberOfOrders Delta
Value

Unsigned
integer

Calculate the difference from the
prior occurrence of
NumberOfOrders

276s= QuoteCondition CopyCode String Copy QuoteCondition from the prior
occurrence

277s= TradeCondition CopyCode String Copy TradeCondition from the prior
occurrence

XML Template Notation
A FAST Template may also be defined as an XML document using an XML schema. This XML
format is intended to be both human and machine readable and can be used for authoring,
storing and interchanging FAST templates. The format is not intended to be used on the wire
when two end points exchange template definitions over a FAST session. For wire transfers, the
FAST Session Control Protocol [SCP] provides a FAST serialization of the structures defined by
this document.

Sample XML Template Document
The xml document below describes the same template as that shown above using compact
notation. For complete information on how to define templates in XML please reference the
detailed FAST Template Definition Specification found at
http://fixprotocol.org/documents/2374

Copyright © FIX Protocol Ltd. Page 11 January, 2006

http://fixprotocol.org/documents/2374

FIX Protocol Limited
A Basic User’s Guide to Implementing FAST

<templates xmlns="http://www.fixprotocol.org/ns/template-definition"
ns="http://www.fixprotocol.org/ns/templates/sample">

 <template name="MDRefreshSample">
 <messageRef name="MDIncrementalRefresh"/>
 <string name="8"> <constant value="FIX4.4"/> </string>
 <u32 name="9"> <implicit/> </u32>
 <string name="35"> <constant value="X"/> </string>
 <string name="49"> <constant value="CME"/> </string>
 <u32 name="34"> <increment value="1"/> </u32>
 <string name="52"> <delta/> </string>
 <u32 name="75"> <copy/> </u32>
 <sequence name="MDEntries">
 <length name="268"/>
 <decimal name="270"> <delta/> </decimal>
 <i32 name="271"> <delta/> </i32>
 <u32 name="273"> <delta/> </u32>
 <u32 name="346" presence="optional"/>
 <u32 name="1023"> <increment value="1"/> </u32>
 <string name="279"> <copy/> </string>
 <string name="269"> <copy/> </string>
 <string name="107"> <copy/> </string>
 <string name="48"> <delta/> </string>
 <string name="276"> <copy/> </string>
 <string name="274"> <copy/> </string>
 <decimal name="451"> <copy/> </decimal>
 <string name="277"> <default value="F"/> </string>
 <u32 name="1020" presence="optional"/>
 <i32 name="537"> <default value="1"/> </i32>
 <string name="1024"> <default value="0"/> </string>
 <string name="336"> <default value="2"/> </string>
 </sequence>
 <string name="10"/>
 </template>
</templates>

Template Operator Contexts
There are two Template Operator contexts that can be expressed in a template definition:
Dictionary Context and Scope Context. Note that Template Operator Contexts are only supported
in XML Notation, not Compact Notation.

Dictionary Context
The Dictionary Operator determines the range of a field encoding operation for a given field.
There are 3 levels at which the Dictionary Context can be specified;

• template level – the dictionary is local to the current template. This means that a field
with name N in template T1 will share the same dictionary as a field with name N in
template T2 if1 T1 = T2

• message level – the dictionary is local to the current message type. This means that a
field with name N in template T1 that is a template of message type M will share the
same dictionary as a field with name N in template T2 that is a template of message type
M.

• global level – the dictionary is global. All fields with name N share the same dictionary
regardless of the template and message type.

1 if and only if

Copyright © FIX Protocol Ltd. Page 12 January, 2006

FIX Protocol Limited
A Basic User’s Guide to Implementing FAST

Scope Reset Context
The Scope Operator specifies when a dictionary is automatically reset. When a dictionary is
reset, the entry for a field is removed. This means that the next time a field is decoded, there is no
previous value. There are four scopes:

• group – the dictionary is reset for each group. Note that in this case, messages and
sequences are also counted as groups.

• message – the dictionary is reset for each message.

• frame – the dictionary is reset for each frame. A frame is a logical unit that is not explicitly
encoded in a FAST stream. Thus the start of a frame must be signaled to the encoder
and decoder by other means not defined by this specification.

• session – the dictionary is reset at the start of a session. A session is a logical unit that is
not explicitly encoded in a FAST stream. Thus the start of a frame must be signaled to
the encoder and decoder by other means not defined by this specification.

NULL Value Usage
Null values are useful when a generic template is used across multiple message types. In this
situation, there may be fields which are present in one occurrence of the message but not in
another.

For example, The MDEntry repeating group that is present in the FIX Market Data Incremental
Refresh template shown above can be used to express a trade, bid, ask, high, low, etc within a
single message. A trade entry will not use tag 346, NumberofOrders. However, FAST requires
that this field be accounted for in the encoded message if specified in the template. A NULL
Value would be used in this case to indicate that the field was not present in the data. When
expressed in Compact Notation tag 346 would appear as:

346U-

In the serialization layer, FAST reserves binary zeros to indicate a NULL value. For more
information, see the FAST Transfer Encoding Specification which can be found at
http://fixprotocol.org/documents/2255/FAST%20Transfer%20Encoding%20Specification%201.0.d
oc

Considerations in Specifying a Template
It is important to understand the characteristics of the data to be encoded when defining a
template. Some considerations to take into account when are:

 Analyze and identify the statistical patterns that occur in a data feed and incorporate this
in the template definition. This will be necessary in determining which field encoding
operations to apply. For example, if a depth book feed is being produced with
consecutive “bid” entries followed by consecutive “ask” entries it will be more efficient to
use Copy Coding with the MDEntryType field. However, if that same feed is being
produced as a “bid” followed by the corresponding “ask”, then Default Value coding will

Copyright © FIX Protocol Ltd. Page 13 January, 2006

http://fixprotocol.org/documents/2255/FAST Transfer Encoding Specification 1.0.doc
http://fixprotocol.org/documents/2255/FAST Transfer Encoding Specification 1.0.doc

FIX Protocol Limited
A Basic User’s Guide to Implementing FAST

be more efficient – as it will allow MDEntryType to be defaulted to the proper value 50%
of the time

 Sequence the fields properly within a template. Fields which are consistently Copy Coded
away should be placed at the end of the template in order to reduce the size of the
presence map. Fields which are no longer physically present in a message can be
dropped from the presence map if they are placed at the end of the template.

 Determine which numeric fields carry values that would benefit from scaling. Fields which
can carry large numeric numbers are good candidates for downward scaling. Fields
which convey decimal precision are good candidates for upward scaling.

Template ID
Each template is assigned a Template ID that can be used to uniquely describe the format of an
encoded message. A Template ID will be carried in every encoded message which will provide a
link to the correct template for decoding.

Template ID should be a simple unsigned integer carried as the first data field of every message
that allows the decoding system to apply the correct template to the message upon receiving it.

Template ID is encoded and carried as the first data field of the message and will follow
the first presence map of each message. It is imperative that all implementations conform
to this rule in order to engender interoperability across platforms. A receiver cannot
decode the data until the Template ID is located within the message.

The example that follows shows the same template from above with Template ID as tag 999. In
this case, Template ID is being defaulted to the value “1234”, and copy coded to this value in any
subsequent messages. The combination of tag number 999 and the specified value of “1234” tells
the system that the ID for this template is “1234”.

The sequenc

 Loca
 Trea
 Retri
 Deco

Template
Templates n
responsible f
through seve

Out-of-band
Out-of-band
through a us
from the sen
templates an

Side-band

Copyright ©

999u=1234|8s!FIX.4.4|9u|35s!X|49s=|34u+1|268u
<279u=|269s=|55s=|167s=|270F-|271F-|346u-|276s=|277s=>
e, then, for processing a message should be as followed:
te and read the first presence map field
t the next field as the Template ID – this is the first logical field of the message
eve the correct template once the Template ID has been decoded
de the remainder of the message using the template

Exchange
eed to be communicated from sender to receiver. The originator of the data is
or distributing the templates once they have been defined. This can be accomplished
ral means;

template exchange between template sender and receiver may be accomplished
e of a basic text file. This file may be a file downloaded from a website, or emailed
der to receiver. The key is that the sender and receiver agree on the format of
d acknowledge that the exchange has occurred.

 FIX Protocol Ltd. Page 14 January, 2006

FIX Protocol Limited
A Basic User’s Guide to Implementing FAST

Side-band template exchange may be accomplished through either a broadcast or point-to-point
connection. In this approach, the sending party may transmit the templates either on a continual
basis or in response to a request by the receiving parties. Generally, templates will be in ASCII
form unless the parties agree to encode the templates. If templates are encoded, a “bootstrap”
template is necessary to decode the templates. Parties need to agree on the format of the
bootstrap template in advance of template transmission.

In-band
In-band template exchange may be accomplished through either a broadcast or point-to-point
connection. In this approach, the sending party transmits the templates as part of the primary
data feed and the receiver must pick them out of the feed. Generally, templates will be in ASCII
form unless the parties agree to encode the templates. In this case, a “bootstrap” template is
necessary to decode the templates. Parties need to agree on the format of the bootstrap template
in advance of template transmission.

Currently, it is recommended that the first option be used – out-of-band template exchange - in
which the sending party makes the templates available via text file using the conventions for
template definition discussed earlier. A request-based model is still being worked out by the
Market Data Optimization Work Group.

Using FAST in a Broadcast Environment
FAST can be effectively implemented in a broadcast environment in which a single sender is
broadcasting a data feed to one or more receivers. A broadcast model takes place over a
multicast transport which uses the User Datagram Protocol (UDP). “UDP is a simple, datagram-
oriented transport layer protocol: each output operation by a process produces exactly one UDP
datagram which causes one IP datagram to be sent2”. UDP is unreliable - meaning that packets
can be delivered out of sequence or even dropped.

Sending Data via UDP
The UDP payload carries the FAST encoded data and is usually 1000 to 1400 bytes in size. This
payload is also known as the packet or frame. A FAST implementation should be configured to
process no more than a single frame due to the unreliable nature of UDP. Performing encode
operations across multiple UDP frames is not recommended since data may be undecipherable
should one of the packets become lost or out-of-sequence.

It is recommended that the Sender Process perform the encode operation on a frame-by-frame
basis. The process should count the bytes as they are loaded into a frame. When the frame is
full, the UDP packet should be transmitted.

Optionally, a frame length delimiter can be used to indicate the amount of encoded data to be
read from a UDP frame. A frame length delimiter would be specified as the first field in message,
preceding even the initial presence map field. Please see Frame Length below for more
information.

Receiving Data via UDP
Receiving and decoding a FAST data feed in a broadcast environment is relatively
straightforward. The basic operation requires the decoding of data within a discreet packet as well
as the ability to determine the end of one message and beginning of another within that packet.

2 TCP/IP Illustrated, Volume1 – W. Richard Stevens

Copyright © FIX Protocol Ltd. Page 15 January, 2006

FIX Protocol Limited
A Basic User’s Guide to Implementing FAST

Decoding a Packet
Decoding of the datagram should be conducted as a unit of work in which all data in the packet
participates in the scope of the decoding process. In order to determine when the process has
fully decoded a discreet message it is important to use the presence map/s and the template to
step through a message field-by-field.

Decoding Messages in a Packet
For a message that uses repeating groups, the decoder must keep track of the number of
repeating groups processed verses the number of repeating groups as specified in the
NumberOfRepeatingGroups tag. Each repeating group will have its own presence map which will
be used to in decoding the group.

When the decoder determines that it has processed all repeating groups in the message, and that
the repeating group was the last structure in the template, then it can conclude that the end of the
message has been reached. In this way, it is necessary to use the presence maps, Number of
Repeating Group field, and template to determine when end of message has been reached. To
recap, the steps involved are:

 Decode fields in the non-repeating body of the message using presence map
 If the last field in the template has been reached then end of message has been

encountered
 If NumberOfRepeatingGroups tag is present, then process each repeating group

using the repeating group presence map.
 When number of repeating groups processed equals NumberOfRepeatingGroups,

then end of message has been encountered
 In the example below Message 1 has 3 repeating groups (RG), each repeating group

has a presence map (PM), and the last repeating group signifies the logical end of
the message

Message 1
Presence Map

Template ID
Top Level Fields
NumGroups=3

RG1

PM2

RG3

PM1

RG2

PM3

Message 2
Presence Map

Message 2 Message 1

E
n
d

Error Handling in a Broadcast Environment
If FAST encounters an error during the process of decoding the contents of a UDP packet, the
process should stop throw an exception and discontinue decoding. In all likelihood, the error is
due to an inconsistency between the encoded data and the template being used to decode the
data. At this point, it is advised that parties synchronize templates in order to ensure that the
same data definitions are being used.

Using FAST in a Point-to-point Environment
FAST can be effectively implemented in a point-to-point environment. In this configuration, a
sender transmits data to a single receiver. Generally, point-to-point connections are conducted
over a TCP-IP transport which provides greater reliability in data delivery. Every transmission
requires a response from the receiver acknowledging that the data was received in good form.
This greater reliability allows the scope of a FAST transaction to be extended across a much
larger window than UDP which is limited to a transmission packet.

Copyright © FIX Protocol Ltd. Page 16 January, 2006

FIX Protocol Limited
A Basic User’s Guide to Implementing FAST

Sending Data via TCP-IP
Because TCP-IP is reliable, FAST can operate on a much larger set of data. As long as the
sender is receiving acknowledgements that the data has been successfully delivered, the sender
can continue to encode from the point in time at which the TCP session was initiated. This has
the potential to produce higher compression across the overall feed.

It is important for the sender to provide message or frame delimitation for the data being sent.
Because TCP-IP is essentially a byte-stream the receiver will not know how many bytes must be
received before decoding should begin. Because of this it is important for the sender to use a
frame length delimiter which will tell the receiver how many bytes are in a logical packet. This
frame length field should be provided as the first field in any encoded message preceding
even the presence map and the template id. It would appear in a message stream as shown
below.

Message BodyTemplate IDPresence Map Frame

Receiving Data via TCP-IP
A receiver of a data feed over a TCP-IP connection will need to manage the data being received
as a byte stream rather than in discreet packets. Double buffering is an alternative to a byte-
oriented approach but involves additional processing and complexity. In order to provide support
for logical packets of data in a non-packeted feed, the use of a frame length is recommended.

Frame Length
Frame Length is very useful to a receiver in a point-to-point, byte-oriented feed and provides
information with respect to the size of the logical packet that is to be decoded. The Frame Length
is used to specify the encoded length of a logical packet of data and tells the receiver how many
bytes to read before decoding a specific chunk of data. The sender and receiver need to agree on
the scope of the packet ahead of time – that is, how many messages a logical packet should
contain.

The Frame Length is always carried as the first field of any logical packet and is encoded in the
same manner as all other data. The frame length field is a variable length unsigned integer, so
there is not need to define a length for it. It will vary from frame to frame.

As the receiver begins to process a stream of bytes the Frame Length can be used to read the
specified number of bytes and begin decoding only once those bytes have been received.

[no need to initialize at the end of the frame]

Error Handling in a TCP Environment
If FAST encounters an error during the process of decoding the contents of a TCP stream, the
process should throw an exception and discontinue decoding. If frame lengths are being used the
process should skip to the end of the frame before initiating decoding. In all likelihood, the error is
due to an inconsistency between the encoded data and the template being used to decode the
data. At this point, it is advised that parties synchronize templates in order to ensure that the
same data definitions are being used.

FAST Reference Code
FAST Reference Code has been made available which can be licensed through FPL for use in
FAST implementations. The reference code is useful in getting started and provides a core
encoder/decoder component called the FASTapi Codec that adheres to the FAST specification.

Copyright © FIX Protocol Ltd. Page 17 January, 2006

FIX Protocol Limited
A Basic User’s Guide to Implementing FAST

The reference code also provides an Application Codec which contains a hard-coded template
representing the FIX Market Data Incremental Refresh Message. A Test Harness is provided to
execute the FASTApi Codec with the corresponding Application Codec. The Test Harness allows
the implementation to be executed as either an encoder or decoder.

The FAST Reference Code provides support for most of the concepts discussed within this Basic
User’s Guide.

The FAST Reference Code and User’s Guide can be found at the following links:
FAST Reference Code:
FAST Reference Code User’s Guide:

Copyright © FIX Protocol Ltd. Page 18 January, 2006

	Document History
	Purpose
	Abstract
	How FAST Works
	Templates
	Field Encoding
	Transfer Encoding (Serialization)

	Templates in FAST
	What are Templates?
	How FAST Uses Templates
	Template Definition and Syntax
	Template Definition Using Compact Notation
	Market Data Template
	XML Template Notation
	Template Operator Contexts
	Scope Reset Context
	NULL Value Usage
	Considerations in Specifying a Template
	Template ID
	Template Exchange

	Using FAST in a Broadcast Environment
	Sending Data via UDP
	Receiving Data via UDP

	Using FAST in a Point-to-point Environment
	Sending Data via TCP-IP
	Receiving Data via TCP-IP

	FAST Reference Code

